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1. GENERAL INTRODUCTION

1.1 Introduction

Blood transfusion is an essential part of modern healthcare, which helps save millions of
lives each year. Since blood is a unique resource for which an artificial substitute has yet
to be found, blood donations are in great need. There are several types of blood donation,
but the most common type is whole blood donation. Whole blood is a term used in
transfusion medicine for a standard (500 ml) blood donation as opposed to plasma and
platelet donation.
Although blood donations and subsequent transfusions are meant to help patients, they
might be harmful for both the recipients and the donors. For example, blood products
are associated with the possibility of transmission of infectious agents (Murphy, 2002).
Therefore, to secure blood safety and donor health, donors must fulfill a number of
eligibility criteria prior to each donation.
The most important potential harm for donors is that whole blood donation causes a
loss of iron and blood cells. After a donation, on average a male donor loses 242 mg
and a female donor 217 mg of iron (Simon, 2002), which is 4-8% of total body iron.
Since iron is the most important element of the Hb protein, the loss of iron can lead to
depleted iron stores and lowering of Hb levels (Skikne et al., 1984; Amrein et al., 2012).
Potential symptoms of iron deficiency include fatigue, decreased physical endurance and
work capacity, and impairment in attention, concentration, and other cognitive functions
(Brittenham, 2011; Popovsky, 2012; Newman et al., 2006; Dallman, 1986; Schiepers et al.,
2010). Restless legs syndrome, a neurologic disorder with irresistible need to move the
legs, and pica, a disorder in which a person is craving and consuming nonnutritive
substances, have also been repeatedly linked to blood donation related iron deficiency
(Ulfberg and Nyström, 2004; Birgegård et al., 2010; Bryant et al., 2013; Spencer et al., 2013).
Repeated donations could lead to iron depletion and ultimately to anemia (Skikne et al.,
1984; Brittenham, 2011).
To protect donors from developing iron deficiency anemia after blood donation, the Hb
value of blood donors is assessed prior to each donation. Donors with a Hb value that
is too low are deferred from donation to protect donor health. Furthermore, deferral of
donors with too low Hb values ensures that the quality of blood units for transfusion
meets the required standards for Hb content (Baart, 2013). The minimum Hb values for
donation are 8.4 mmol/l (135 g/L) for men and 7.8 mmol/l (125 g/L) for women based
on the European Commission Directive (Baart, 2013). Each year a considerable proportion
of prospective blood donors are temporarily deferred from donation because of too low
Hb values (Popovsky, 2012; Newman, 2004). For instance in the Netherlands in 2011, men
and women were deferred in 2.2% and 5.5% of the visits to the blood bank due to a low
Hb value. Although deferrals are meant to protect donors and the quality of blood units
for transfusion, Hb deferrals decrease the cost-effectiveness of blood supply, because (i)
testing and deferring a donor are expensive; (ii) for every deferred donor, another donor

2
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1.1. Introduction

needs to be invited to reach collection targets; and (iii) lapsing donors need to be replaced
by new donors because deferred candidates rarely return for donation (Halperin et al.,
1998).

Hb recovery process

The loss of iron due to blood donation causes the Hb concentration to decrease and to
reach its nadir a few days after donation (Wadsworth, 1955; Boulton, 2004; Kiss et al.,
2015). The Hb value will then gradually recover to its pre-donation value (Wadsworth,
1955; Boulton, 2004; Kiss et al., 2015). In healthy donors with sufficient iron stores this
may not be problematic. Repeated donations could however deplete iron stores, leading
to iron depletion and ultimately anemia (Skikne et al., 1984; Brittenham, 2011). The time
needed for Hb value to return to its pre-donation value is the so-called recovery time. This
recovery time varies between individuals and might depend on some biological factors.
Basically, when the iron intake is not sufficient to replenish the iron loss due to donation
or the interval between two successive donations is too short (that Hb value does not
recover completely), a negative iron balance occurs. This results in gradually declining
Hb values over time, which are currently not detected until the donor meets any of the
deferral criteria. Therefore, blood donors on average need several weeks to replenish
the lost iron after a blood donation (Fowler and Barer, 1942). However, there are wide
variations in the duration of the recovery period among individuals.
Already in the 1940s, it was estimated that the body needs around 50 days to recover
to pre-donation Hb levels (Fowler and Barer, 1942; Alstead, 1943). Therefore, currently
guidelines for blood donation in the Netherlands impose a minimum interval of 56 days
between donations, with a yearly maximum of 5 donations for men and 3 for women
(Baart, 2013). A declining trajectory has been observed in Hb values for some individuals,
and therefore these guidelines may not be safe for all individuals. The Hb recovery process
after blood donation is illustrated in Figure 1.1. In this figure δ indicates the time that Hb
reaches its minimum value after donation, RT indicates the recovery time that is needed
for Hb to return to its pre-donation value, and θ shows the amount of reduction in Hb
after donation.

Factors associated with Hb value

Several factors are known to be associated with the Hb value and hence may be used
as predictors for Hb, i.e., sex (Yip et al., 1984), season (Hoekstra et al., 2007), age (Yip
et al., 1984), and body mass index (BMI) (Yip et al., 1984). Men on average have higher
Hb values than women. The Hb value decreases with increasing age in men, whereas
in women, the Hb value rises by the effect of menopause due to hormonal changes and

3
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Figure 1.1: Hb recovery process after blood donation: δ indicates the time that Hb reaches its min-
imum value after donation, RT indicates the recovery time that is needed for Hb to return to its
pre-donation value, and θ shows the amount of reduction in Hb after donation.

the cessation of iron loss through menstruation (Yip et al., 1984). Although women have
a lower threshold for the Hb value to be eligible for donation, Hb deferral occurs more
frequently in women than in men (Baart, 2013). BMI is also associated with Hb levels,
i.e., a greater BMI is associated with higher Hb levels (Micozzi et al., 1989). Furthermore,
donation history including number of donation in the past and the level of Hb in the
previous visits/donations may affect the Hb value. The longer the interval between two
donations, the more time for the donor to recover from the previous donation (Garry et al.,
1995; Simon et al., 1981; Finch et al., 1977). A list of factors potentially associated with Hb
value can be found in previous literature (Baart, 2013).

Sanquin

Sanquin is the national blood service in the Netherlands. In Sanquin donors must be be-
tween 18 and 70 years old, and prior to each donation donors must fill out an eligibility
questionnaire to identify known medical conditions and high-risk behaviors. In a physical
examination, body weight, pulse rate, blood pressure and the hemoglobin concentration1

(Hb) value are measured. According to European guidelines, donors must have a body
weight of at least 50 kg, a regular pulse, a systolic blood pressure between 90 and 180
mmHg, a diastolic blood pressure between 50 and 100 mmHg, and a Hb value of at least
8.4 mmol/L (135 g/L) for men and 7.8 mmol/L (125 g/L) for women. For blood collec-
tion, all measured data were entered into the blood-bank computer system (e)PROGESA
(MAK-SYSTEM International Group, France). Prior to donation, Hb and other parameters
undergo a check to determine whether the prospective donor is eligible. Sanquin dose not
allow a newly registered donor donates blood at the first visit (i.e., the screening visit),

1Hereafter, whenever we say hemoglobin we mean hemoglobin concentration.

4
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1.2. Modeling longitudinal data of blood donors

which consists of a health check only. At every subsequent visit, donors who pass all eli-
gibility checks may donate 500 ml of whole blood. Finally, guidelines impose a minimum
interval of 56 days between donations, with a yearly maximum of 5 donations for men
and 3 for women (Baart, 2013). In 2014, 312,206 whole blood donors and 441,403 whole
blood donations were registered at Sanquin.

Donor InSight data

The Donor InSight Study is a large prospective cohort study that was conducted by San-
quin among a random sample of 50,000 whole blood and plasma donors in 2007-2009.
This data set is based on a self-administered questionnaire aimed at gaining insight into
characteristics and motivation of the Dutch donor population (Atsma et al., 2011). In Fig-
ure 1.2, profiles of the Hb value after the screening visit for a subset of male and female
donors in the Donor InSight data are displayed. The horizontal lines represent the eligibil-
ity thresholds for donation. The Donor InSight study was approved by the Medical Ethical
Committee Arnhem-Nijmegen in the Netherlands and all participants gave their written
informed consent. Further information about the Donor InSight study can be found on
the Sanquin website at http://www.sanquin.nl/en/research/donor-insight/. The Donor
InSight data set has been used in several chapters of this thesis.

1.2 Modeling longitudinal data of blood donors

Due to the fact that there are repeated measurements of Hb per donor, the observed Hb
values can be seen as a longitudinal data set. To analyze the recovery, and to predict fu-
ture Hb values and future rejections due to low Hb, statistical methods for longitudinal
data are required. A large number of such techniques are available, such as linear mixed
models (Molenberghs and Verbeke, 2001) and transition models (Diggle et al., 2002).
The longitudinal data of Hb values of blood donors have a number of unique aspects,
namely a) heterogeneity of the initial Hb value, b) state dependence (i.e., within-subject
correlations) of a donor’s Hb values, c) varying time intervals between donations, d) the
temporary reduction in Hb after blood donation, and e) the fact that the recovery pro-
cess may change with the number of donations and may differ between donors. Due to
these aspects, existing methods for analyzing longitudinal data are not directly applicable.
Thus the new statistical methodology is required to properly analyze these blood dona-
tion data.
In analyzing longitudinal and repeated measures data, the central problem is the pres-
ence of association between repeated measures that were recorded for the same individ-
ual. For valid inferences, this association should be taken into account. The association
structures can be defined as true and apparent contagion. In the former case, actual and
future observation are directly influenced by previous observation(s). The latter case arise

5
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Figure 1.2: Hb profiles after the screening visit for a subset of male and female donors. Five random
profiles are highlighted for both sexes. The bold dashed lines show the corresponding thresholds of
eligibility for donation.

when individuals are drawn from heterogeneous populations, each population having a
constant, but different, evolution (Aitkin and Alfò, 2003). Basically, considering a single
individual (conditionally), previous observations do not influence the subsequent obser-
vations. However, the aggregate analysis of heterogeneous individuals could produce a
misleading statistical finding, since this unobserved but persistent heterogeneity can be
interpreted as being caused by a strong serial dependence. The distinction between true
and apparent contagion is not always straightforward (Feller, 1943).

1.3 Overview of statistical models for longitudinal data

This section provides an overview of the statistical techniques that are applied in this
thesis. This includes the statistical approaches that are usually applied in the analysis of
longitudinal data. Namely, we will describe mixed effects models, transition models and
mixture models, which cover several chapters of this thesis. The statistical techniques in
this thesis were implemented in both Bayesian and frequentist frameworks.

6
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1.3. Overview of statistical models for longitudinal data

Linear mixed-effects models

Linear mixed effects models (LMMs) are linear models with both fixed and random effects.
A specific case of a LMM is a longitudinal growth study, where the baseline responses for
the individuals differ but their linear growth is the same. This yields the random intercepts
model, given by:

yit = bi + β
′
xit + εit, (1.1)

where yit is the tth observation of the ith individual, xit represents the q-dimensional co-
variate vector with fixed effects vector β having length q, and bi represents the random
intercept. It is assumed that bi and εit are normally distributed and mutually independent
with mean zero and different constant variances, i.e., bi ∼ N(0, σ2

b ), and εit ∼ N(0, σ2
ε)

(Molenberghs and Verbeke, 2001). Furthermore, in the random intercept model the corre-
lation between two observations of a subject is constant and is equal to the intra-class cor-

relation given by ρ =
σ2
b

σ2
b
+σ2

ε
(Verbeke and Molenberghs, 2000; McCulloch and Neuhaus,

2001).
The linear mixed effects model in 1.1 can be extended by adding more random effects on
top of the random intercept. For example in the previous longitudinal growth study, not
only the baseline measurement, but also the true linear growth trend for each individual
can be assumed to be different. This results in a linear random intercept and slope model.
In general, the linear mixed-effects model can be written as follows:

yit = b
′
izit + β

′
xit + εit, (1.2)

where bi represents the q-dimensional random-effects with a multivariate normal distri-
bution having mean zero and covariance matrix Σb, and zit is the corresponding vector
of q covariates. The other terms are the same as in 1.1. Mixed-effects models are the most
famous models for capturing apparent contagion (heterogeneity) between different indi-
viduals in longitudinal studies.

Transition models

A transition model, also known as an autoregressive panel data model in the econometrics
literature, is a dynamic regression model, in which the current response of a particular
individual is regressed on previous responses of that subject as well as on other covariates
(Diggle et al., 2002). A transition model of order q can be expressed as:

yit = β
′
xit +

q∑
r=1

γryit−r + εit, (1.3)

where yit is the tth observation of the ith individual, xit represents the q-dimensional
covariates vector with fixed effects vector β having length q, yit−r is the rth lagged re-
sponse and γr is the corresponding coefficient of the rth lag. Classically it is assumed that

7
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1. GENERAL INTRODUCTION

the residuals εit are normally distributed and mutually independent with mean zero and
constant variance, i.e., εit

iid∼ N(0, σ2
ε). In a transition model with order q, the predicted

values depend on q lagged previous observations; however, to calculate the predicted
value using 1.3, there are not enough previous observations for the first few visits of a
donor. Transition models are well-known models for capturing true contagion (state de-
pendence) between observations in longitudinal studies.

Mixed-effects transition model

In some cases neither of the aforementioned approaches (i.e., mixed-effects model and
transition model) are able to adequately explain the correlation structure alone, due to the
presence of both unobserved heterogeneity and state dependence. For these reasons, we
may combine the mixed-effects model and the transition model by including unobserved
individual-specific effects and a lagged endogenous variable in a single regression model.
Such a mixed-effects transition model is popular in econometrics for forecasting (Diggle
et al., 2002), but less commonly used in medical applications (Funatogawa and Funato-
gawa, 2012). This model is given by:

yit = bi1 + β
′
xit + γyit−1 + εit, (1.4)

where bi1 controls the heterogeneity now partly explaining the intra-subject correlation,
and γ is the lagged impact of the previous observation (yit−1). For a stationary process,
i.e., |γ| < 1, the correlation between two subsequent measurements, can be expressed as
(Rikhtehgaran et al., 2012):

ρyit,yit−1 = γ +
1− γ

1 + (1− γ)σ2
ε/[(1 + γ)σ2

b ]
. (1.5)

When the lag impact γ is negligible, this correlation reduces to the intra-class correlation
(ICC) in the mixed-effects model. On the other hand, when there is no heterogeneity
between individuals, i.e., σ2

b ≈ 0, the correlation is equal to the lag impact only.

Mixed-effects model with serial correlation

Another possible solution for capturing true contagion is a model with serial correlation
(Anderson and Hsiao, 1982). This model can be given as follows:

yit = bi + β
′
xit + γ(yit−1 − β

′
xit−1) + εit. (1.6)

In this model, in contrast with the mixed-effects transition model the current response is
affected merely by current covariates and not by previous covariates i.e., xit−1, xit−2, . . .,
xit−q . In other words, in a transition model a change in a time-dependent covariate (x)
that affects the distribution of y in the current period will also affect this distribution in

8
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Figure 1.3: Intervention on time-dependent covariate and its impact on transition and serial correla-
tion models.

forthcoming periods (Funatogawa et al., 2007). This issue is exemplified here. Assumed
a transition model and a serial correlation model as 1.7 and 1.8, respectively. Where the
inital observation is 15 (i.e., y1 = 15) and xt = 10 for all times (t = 1, . . . , 10). We apply
an intervention to xt at time t = 4 and change x4 = 5. This intervention at time t = 4

has an effect only on y4 in 1.7. However, in 1.8 the intervention has an effect not only on
y4, but also on later observations, i.e., y5, . . ., y10. Figure 1.3 illustrates the impact of this
intervention in both transition and serial correlation models.
A serial correlation model:

yt = 6− 0.2xt + 0.6(yt−1 + 0.2xt−1) + εit, (1.7)

A transition model:

yt = 6− 0.2xt + 0.6yt−1 + εit. (1.8)

Growth mixture models

In the mixed-effects models framework, the intercept (and slope) vary across individuals
and the heterogeneity between individuals is captured by random effects (i.e., continuous

9
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latent variables). This approach assumes that all individuals come from a single popula-
tion and that a single growth trajectory can adequately approximate an entire population.
Also, it is assumed that covariates that affect the growth trajectory influence each individ-
ual in the same way. Therefore, this approach may not be able to capture entire hetero-
geneity and might oversimplify the complex growth pattern in population.
To solve this problem, growth mixture modeling has been proposed, which is a statistical
technique that allows for heterogeneity in the growth trajectories. This heterogeneity is
presented by a latent categorical variable that defines k latent classes of individuals, each
of which are potentially described by a unique set of growth model parameters. Each of
these latent classes is then characterized by a mixed-effects model, so that heterogeneity
within each group is captured by random effects. The objective of these approaches is
to capture information about inter-individual differences in intra-individual change over
time (Nesselroade, 1991). The density function of y in a growth mixture model can be
expressed as:

f(y|λ, θ) =
K∑

k=1

λkfk(y|θk),

where fk(y|θk) (k = 1, . . . ,K) are density functions that describe the trajectory for each
class. The wks represent the proportion of subjects in each class, and must satisfy 0 ≤ λk ≤
1 and

∑K
k=1 λk = 1 (McLachlan and Peel, 2004). The vector θk represents the parameters

that are associated with the trajectory of class k. Latent class growth analysis (LCGA)
is a special type of GMM, where the variance and covariance estimates for the growth
factors within each class are assumed to be fixed to zero. LCGA assumes that individuals
heterogeneity is completely captured by the different growth trajectories of the k latent
classes, which means all individual growth trajectories within a class are assumed to be
homogeneous (Tofighi and Enders, 2008).

1.4 Bayesian approach

The central idea of the Bayesian approach is to combine the likelihood (data) with the prior
knowledge (prior probability) to result in a revised probability (posterior probability).
The parameter θ is given a probability distribution, which is in contrast to the frequentist
approach, where it is a fixed but unknown value. The parameters become stochastic due
to our uncertainty of their values. We denote p(θ) as the prior distribution of θ that can
be specified on the basis of historical studies and/or with expert knowledge, but without
observing the current data y. L(θ|y) is the likelihood defined by the model specification.
The probability distribution of θ, which is called the posterior distribution, is obtained by
combining the information from the prior and the data according to Bayes’ Theorem:

p(θ|y) = L(θ|y)× p(θ)

p(y)
. (1.9)

10
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The denominator p(y) can be written as the integral of the likelihood L(θ|y) with respect
to the variable θ, and is therefore called the averaged likelihood. Bayes’ theorem shows
one of the advantages of the Bayesian approach, which can utilize a priori information
to increase the power for estimation. Another merit of the Bayesian approach is that the
parameters are stochastic, which means uncertainty of their values is taken into account,
which makes the interpretation of parameter estimates straightforward.
In case there is no prior information about the parameters in the model, a non-informative
prior is often implemented. However, there exists no purely non-informative prior. Some
relatively uninformative priors were suggested as vague priors e.g., Jeffreys priors (Jef-
freys, 1946) or reference priors (Bernardo, 1979). The aim of using vague priors is to ensure
the impact of the prior on the posterior is minimal, so that the posterior represents infor-
mation in the data. This kind of Bayesian analysis is called objective Bayesian in contrast
to subjective Bayesian.
Note that in the denominator of 1.9, each integral may involve multiple integrations de-
pending on their respective dimensions. Because of the high-dimensional integration, the
Bayesian approach was for about two centuries impossible to use for real-life problems
(Lesaffre and Lawson, 2012).

Bayesian computational techniques/softwares

Computing a posterior distribution analytically is almost impossible. There are several
techniques to estimate the posterior. In the 1980s and 1990s a powerful class of numerical
procedures, called Markov Chain Monte Carlo (MCMC) techniques (Gelfand and Smith,
1990), was launched that revolutionized the Bayesian approach. The MCMC technique is
based on a sampling approach, i.e., the integral is approximated by Monte Carlo sampling
(Ripley, 1988). There are two major classes of MCMC techniques: Gibbs sampling and
Metropolis-Hastings (MH) sampling. These sampling techniques are available in standard
open access Bayesian software e.g., WinBugs (Lunn et al., 2000), OpenBugs (Thomas and
OHara, 2004), Jags (Plummer, 2011). Other sampling techniques have recently been de-
veloped e.g., Hamiltonian or Hybrid Monte-Carlo Sampling (HMC) and The No-U-Turn
Sampler (NUTS) (Homan and Gelman, 2014), which can be implemented via Stan (Stan,
2015). Alternative methods of inference are Approximate Bayesian Computation (ABC)
and Integrated Nested Laplace Approximation (INLA) (Rue et al., 2009), which can be im-
plemented in R-INLA (Martins et al., 2013) in R. Thanks to modern and fast computers,
Bayesian statistics have dramatically increased in popularity in the last decades.

1.5 List of methodological issues

The statistical approaches discussed in the last two sections are relatively complex, and not
always straightforward to implement in practice. There are several methodological issues

11
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1. GENERAL INTRODUCTION

that need to be taken into account when applying these statistical techniques. Below, we
give an overview of these issues, and some suggested solutions from the literature. These
issues are addressed in the next chapters of this thesis.

The initial conditions problem

One of the assumptions in classical mixed-effects models is that the covariates in the model
are exogenous, i.e., the covariance between the covariates and the random effects are zero.
But this assumption is violated in mixed-effects transition models where one of the covari-
ates is the lag variable, which is endogenous. This issue relates to the initial conditions
problem (ICP), which is well-known in the econometrics literature. The ICP occurs due
to the fact that the individual effects, bi1, that capture the unobserved heterogeneity are
correlated with the initial observations, i.e., cov(yi1, bi1) �= 0 (Kazemi and Davies, 2002;
Kazemi and Crouchley, 2006). Ignoring the ICP and thus the endogeneity of yi1 results
in inconsistent estimates in the model (Kazemi and Davies, 2002; Kazemi and Crouchley,
2006), i.e., an upward bias of the estimated state dependence and a downward bias in the
estimated coefficients of explanatory variables (Kazemi and Crouchley, 2006). Several so-
lutions to the ICP have been proposed in the literature (Bhargava et al., 1983; Hsiao et al.,
2002; Wooldridge, 2005). A possible solution is to incorporate the association of the initial
observations and the random effects jointly with the model for the subsequent response
observations. The model is assumed to be similar to the main model, but without the
lagged response variables (Kazemi and Crouchley, 2006). Using this solution, the regres-
sion parameters as well as the residual variance are allowed to differ between the initial
and the subsequent observations. The joint modeling approach enables one to capture the
correlation between the individual effects, bi1, and the initial observations and provides
reliable estimates for the regression parameters (Kazemi and Crouchley, 2006).
A possible model for the initial values could be:

yi1 = β
′
0xi0 + bi0, (1.10)

where bi0 ∼ N(0, σ2
b0), and the model allows for a correlation between bi0 and the random

effects in the model for the subsequent values.

Choosing the number of clusters in latent class models

Identifying the number of correct latent classes (K) in finite mixture models, which can
appropriately capture the entire heterogeneity in the population, is a challenging issue for
researchers (Lee et al., 2008; McGrory and Titterington, 2007; Richardson and Green, 1997;
Rousseau and Mengersen, 2011). Several criteria exist for choosing the number of latent
classes in mixture models in both a frequentist and a Bayesian framework. Whereas in-
formation criteria such as the Akaike information criterion (AIC) (Akaike, 1973) and the

12
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Bayesian information criterion (BIC) (Schwarz et al., 1978) seem to be the most popular
criteria in a frequentist setting, no clear consensus on the optimal criterion in a Bayesian
setting has yet emerged. Although the deviance information criterion (DIC) (Spiegelhal-
ter et al., 2002) is a well-known criterion for comparing different Bayesian models, un-
fortunately this criterion is not suited to the case of mixture models. Several adaptations
of this criterion for mixture models were proposed (Celeux et al., 2006). Alternatively,
models with different numbers of latent classes can be compared by computing marginal
likelihoods, Bayes factors, or by using reversible jump MCMC techniques (Green, 1995).
Recently, Rousseau and Mengersen (2011) showed that in overfitted mixture models, the
overfitted latent classes will asymptotically become empty if the Dirichlet hyperparameter
is small enough. They suggested that this mathematical result can be used to choose the
number of latent classes, by estimating the finite mixture model with a relatively number
of classes and then omitting all classes that have a small proportion.

Change-point problems

The change-point problem occurs when data have a natural ordering. To tackle this issue
a change-point model is needed. This model allows the sequence of data be broken down
into segments with the observations following the same statistical model within each seg-
ment, but different models in different segments (Hawkins, 2001). The best-known appli-
cation of change-point modeling in data analysis is that of regression trees. In the most
widely used implementation (Breiman et al., 1984), the data set is ordered by a contin-
uous or ordinal predictor and then split into two subsequences those cases whose pre-
dictor value falls below some change-point and those whose predictor value is above the
change-point. The change-point is chosen to maximize the separation between the two
subsequences (Hawkins, 2001). This change-point is normally unknown and must be es-
timated via data. The Bayesian change point model can be estimated using the Gibbs
sampler (Western and Kleykamp, 2004).

Identifiability problem

The main identifiability issues in Bayesian statistics can be defined as follows.

Lack of information

Weak identifiability occurs when the technical conditions for identifiability are met but
the data provide little information about the pertinent parameter (Carlin and Louis, 1997;
Garrett and Zeger, 2000). Indeed, the only information that we have about the parameter,
θ, is supplied by its prior (p(θ|y) � p(θ)), and the posterior and the prior distribution are
the same (Garrett and Zeger, 2000). A practical example of this issue is estimating the Hb

13
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1. GENERAL INTRODUCTION

recovery process where the Hb values are only observed with at least a 56 days intervals
between visits. The Hb recovery process was illustrated in Figure 1.1.

Label switching problem

An interesting, challenging issue that arises in the Bayesian analysis of mixture models is
the non-identifiability of the latent classes. The problem is mainly caused by the invariance
of the posterior distribution to permutations of the parameter labeling under symmetric
priors and likelihood (Dellaportas and Papageorgiou, 2006). This leads to so called label
switching in the MCMC output. This will mean that ergodic averages of component spe-
cific quantities will be identical and thus useless for inference (Jasra et al., 2005).
Various solutions have been proposed to tackle this problem, e.g., imposing artificial
identifiability constraints (Richardson and Green, 1997), random permutation sampling
(Frühwirth-Schnatter, 2001), relabeling algorithms (Celeux, 1998; Stephens, 2000), and la-
bel invariant loss functions methods (Celeux et al., 2000). The problem is further com-
plicated in higher dimensions, since the number of identifiability constraints on the pa-
rameter space is very large and relabeling algorithms will require a lot of computing time
(Dellaportas and Papageorgiou, 2006). Figure 1.4 shows the original (Panel A) and rela-
beled (Panel B) trace plots of Gibbs samples of a univariate gaussian mixture distribution
with two latent classes.
Another challenging issue in the Bayesian analysis of mixture models is overparametriza-
tion. Overfitting induces a special type of non-identifiability in the posterior distribution
of mixture models. Theoretically, any mixture distribution can be represented equally well
by another mixture distribution with a larger number of latent classes, where some (extra)
latent classes have either been merged together or have proportions equal to zero (Garrett
and Zeger, 2000; van Havre et al., 2015).

1.6 List of research questions

A number of research questions will be in this thesis, with either a clinical or a method-
ological focus. These research questions are as follows.

� Modeling Hb values to have a better prediction for the future values

� Incorporating prior information to better estimate the Hb recovery process

� Modeling the heterogeneity in the trajectory of Hb values

� Identifying the appropriate number of latent classes in blood donors

� The ultimate aim is to determine the best time for the donor to return for next do-
nation to avoid unnecessary deferral due to low Hb value.

14
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Figure 1.4: Label switching problem in fitting a mixture model on a univariate gaussian mixture
distribution data with two latent classes, the original MCMC output (Panel A) and the relabeled
MCMC output (Panel B).

1.7 Outline of this thesis

This section provides an overview of the separate chapters within this thesis. Per chapter
the main problem and proposed solutions are shortly described. Often followed by some
theoretical background concerning the used datasets.

Chapter 2. Predicting hemoglobin levels in whole blood donors using

transition models and mixed effects models

To optimize the planning of blood donations but also to continue motivating the volun-
teers it is important to streamline the practical organization of the timing of donations.
While donors are asked to return for donation after a suitable period of at least 56 days,
still a relevant proportion of blood donors is deferred from donation each year due to a
too low hemoglobin level. Rejection of donation may demotivate the candidate donor and
implies an inefficient planning of the donation process. Hence, it is important to predict
the future hemoglobin level to improve the planning of donors’ visits to the blood bank.
We developed a hemoglobin prediction rule based on longitudinal data from blood dona-
tions collected by Sanquin. We explored and contrasted two popular statistical models,
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i.e., the transition model and the mixed effects model as plausible models to account for
the dependence among subsequent hemoglobin levels within a donor. The predictors of
the future hemoglobin level are age, season, hemoglobin levels at the previous visits, and
a binary variable indicating whether a donation was made at the previous visit.

Chapter 3. Prevalence and determinants of declining versus stable

hemoglobin levels in whole blood donors

A too short recovery time after blood donation results in a gradual depletion of iron stores
and a subsequent decline in hemoglobin (Hb) levels over time. This decline in Hb levels
may depend on individual, unobserved characteristics of the donor. We used a data set of
5388 Dutch blood donors from the Donor InSight study. The statistical analysis is based
on a Bayesian growth mixture model, which assumes that each donor belongs to one of
several groups. Each group implies a different Hb trajectory, and donors with similar
longitudinal trajectories belong to the same group.

Chapter 4. Prediction of hemoglobin in blood donors using a latent

class mixed-effects transition model

Blood donors experience a temporary reduction in their hemoglobin (Hb) value after do-
nation. At each visit, the Hb value is measured, and a too low Hb value leads to a deferral
for donation. Because of the recovery process after each donation as well as state de-
pendence and unobserved heterogeneity, longitudinal data of Hb values of blood donors
provide unique statistical challenges. To estimate the shape and duration of the recovery
process, and to predict future Hb values, we employed three models for the Hb value:
(i) a mixed-effects models; (ii) a latent-class mixed-effects model; and (iii) a latent-class
mixed-effects transition model. In each model, a flexible function was used to model the
recovery process after donation. The latent classes identify groups of donors with fast or
slow recovery times and donors whose recovery time increases with the number of dona-
tions. The transition effect accounts for possible state dependence in the observed data.
All models were estimated in a Bayesian way, using data of new entrant donors from the
Donor InSight study. Informative priors were used for parameters of the recovery pro-
cess that were not identified using the observed data, based on results from the clinical
literature.

Chapter 5. Comparison of different criteria for choosing the number of

latent classes

In this chapter we deal with identifying the number of latent classes in Bayesian finite
mixture models. Identifying the number of latent classes in Bayesian finite mixture mod-
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1.7. Outline of this thesis

els is a challenging problem. Several criteria have been proposed, such as adaptations
of the deviance information criterion, marginal likelihoods, Bayes factors, and reversible
jump MCMC techniques. It was recently shown that in overfitted mixture models, the
overfitted latent classes will asymptotically become empty under specific conditions for
the prior of the class sizes. This result may be used to construct a criterion for finding the
true number of latent classes, based on the removal of latent classes that have negligible
proportions. Unlike some alternative criteria, this approach can easily be implemented
in complex statistical models such as latent class mixed-effects models and multivariate
mixture models using standard Bayesian software. We performed an extensive simula-
tion study to develop practical guidelines to determine the appropriate number of latent
classes based on the posterior distribution of the class proportions, and to compare this
criterion with alternative criteria.

Chapter 6. Conclusions

In the last chapter of this thesis we summarize the major conclusions from the different
chapters. In addition, a short more general discussion focuses on the interpretation of the
statistical models. Proposals for future research are made where possible.
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2 Predicting Hb levels using

transition models and

mixed-effects models

This chapter is published as: Nasserinejad K, de Kort W, Baart M, Komarek A, van Rosmalen
J and Lesaffre E. Predicting hemoglobin levels in whole blood donors using transition models and
mixed effects models. BMC Medical Research Methodology, 13:62, 2013. doi:10.1186/1471-2288-13-62
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2. PREDICTING HB VALUE USING TRANSITION AND MIXED-EFFECTS MODELS

Abstract.

T
O optimize the planning of blood donations but also to con-

tinue motivating the volunteers it is important to streamline
the practical organization of the timing of donations. While
donors are asked to return for donation after a suitable pe-

riod, still a relevant proportion of blood donors is deferred from dona-
tion each year due to a too low hemoglobin level.
Rejection of donation may demotivate the candidate donor and implies
an inefficient planning of the donation process. Hence, it is important to
predict the future hemoglobin level to improve the planning of donors’
visits to the blood bank.
The development of the hemoglobin prediction rule is based on lon-
gitudinal (panel) data from blood donations collected by Sanquin (the
only blood product collecting and supplying organization in the Nether-
lands). We explored and contrasted two popular statistical models,
i.e., the transition (autoregressive) model and the mixed effects model
as plausible models to account for the dependence among subsequent
hemoglobin levels within a donor.
The predictors of the future hemoglobin level are age, season,
hemoglobin levels at the previous visits, and a binary variable indicat-
ing whether a donation was made at the previous visit. Based on cross-
validation, the areas under the receiver operating characteristic curve
(AUCs) for male donors are 0.83 and 0.81 for the transition model and
the mixed effects model, respectively; for female donors we obtained
AUC values of 0.73 and 0.72 for the transition model and the mixed ef-
fects model, respectively.
We showed that the transition models and the mixed effects models pro-
vide a much better prediction compared to a multiple linear regression
model. In general, the transition model provides a somewhat better
prediction than the mixed effects model, especially at high visit num-
bers. In addition, the transition model offers a better trade-off between
sensitivity and specificity when varying the cut-off values for eligibil-
ity in predicted values. Hence transition models make the prediction of
hemoglobin level more precise and may lead to less deferral from dona-
tion in the future.
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2.1. Introduction

2.1 Introduction

Blood transfusion is an essential part of modern healthcare which helps save millions of
lives each year. Since blood is a unique resource for which an artificial substitute has yet
to be found, blood donations are in great need. However, occasionally donation cannot
be accepted. There may be several reasons for the ineligibility of a blood donor for do-
nation, a common reason being low hemoglobin level of the donor (Gómez-Simón et al.,
2007; Tong et al., 2010). A hemoglobin (Hb) level of 8.4 mmol/l (135 g/l) and 7.8 mmol/l
(125 g/l) for men and women, respectively, is widely accepted as the lower cut-off value
of eligibility for donation (Tong et al., 2010; Radtke et al., 2005; Baart et al., 2011). While
donors are asked to return for donation after a suitable period, a relevant proportion of
blood donors are temporarily deferred from donation each year due to low Hb levels (Tong
et al., 2010). Rejection of donation may demotivate the candidate donor and implies ineffi-
cient planning of the donation process (Halperin et al., 1998; Custer et al., 2007). Hence, it
is important to predict the future Hb level to improve the planning of donors’ visits to the
blood bank. Prediction models for low Hb level deferral have been developed previously
(Baart et al., 2011, 2012).
The main goal of this paper is to illustrate the use of two well-known longitudinal models
in predicting the future Hb level after a visit to the blood bank. An adequate prediction
will help the blood bank to apply appropriate interventions (e.g., postponing the next in-
vitation) for blood donation when the Hb value falls below the cut-off value. Prediction
is based on models developed using historical data of Hb levels obtained from Sanquin
Blood Supply in the Netherlands. More specifically, in this paper we examine the predic-
tive performance of the transition (autoregressive panel data) model and the mixed effects
model.

2.2 Materials and methods

Data

The data have been obtained from Sanquin Blood Supply, which is the only blood prod-
uct collecting and supplying organization in the Netherlands. In this paper, we analyze
newly registered whole blood donors whose first visit to the collection centers occurred
in the period between January 1, 2007 and December 31, 2009 and have donated at least
twice during this period. Whole blood is a term used in transfusion medicine for a stan-
dard blood donation as opposed to plasma and platelet donation. The data were collected
from 16,158 newly registered whole blood donors (54.6% women). The reason for select-
ing this set of blood donors is that they constitute a relatively homogeneous group that
did not donate prior to establishing the Sanquin database. We excluded donors who had
missing values for the Hb level, and the data of the remaining 15, 625 donors were used
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Figure 2.1: Profile of hemoglobin levels for successive visits to the blood bank of a random sample
of male and female donors. The profiles of 5 randomly selected donors are highlighted. The dashed
horizontal lines show the Hb cut-off values of eligibility for donation

in the analyses.
In Sanquin Blood Supply, a candidate has to register prior to donation; after registration
he/she will receive an information package and an invitation to attend a blood donor
health check. If the test results are satisfactory, the candidate will be invited to donate
blood. Therefore, the first visit to the Sanquin Blood Supply is not a donation but a health
check that includes a measurement of the Hb level. After a successful whole blood dona-
tion, a male (female) donor is allowed to return for the next donation after a period of at
least 8 weeks with a maximum of 5 (3) donations per year.
In each visit, prior to donation, the candidates are screened for health risks that might
make the donation unsafe for either the donor or the recipient. These tests include tak-
ing fingerstick capillary samples for measuring Hb level and filling out a health appraisal
form. Based on the results of these tests, the candidate may not be eligible for donation
due to a too low Hb level or other reasons that he/she mentioned in the health appraisal
form. Finally, eligible candidates will donate 500 milliliters (ml) blood. We defined dona-
tion status in each visit as a binary variable in our data set (donation =1, no donation =0).
In Figure 2.1, profiles of the Hb level are displayed for male and female donors separately.
The dashed horizontal lines show the corresponding Hb level cut-off points of eligibility
for donation. Several factors are known to be associated with the Hb level and hence may
be used as predictors for Hb level, i.e., sex (Yip et al., 1984), age (Yip et al., 1984), and body

22



Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016

504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem

2.2. Materials and methods

mass index (BMI) (Micozzi et al., 1989; Skjelbakken et al., 2006).
In this study, we take into account the effect of sex and age in our models, but we decided
to ignore the effect of BMI due to the fact that the BMI was not recorded for approximately
40% of donors. Also, based on a pilot study we found that the impact of BMI on Hb level
is secondary. The season in which the visit takes place also affects the Hb level, namely
in a warm season Hb level is lower on average (Hoekstra et al., 2007; Kristal-Boneh et al.,
1993). Here season is used as a binary covariate, i.e., cold season (=0) includes fall and
winter and warm season (=1) includes spring and summer. Male and female donors have
different Hb profiles. Therefore, we analyzed the data for men and women separately.
Inter-visit intervals differ between donors, in our data set the median inter-visit interval
for male donors is 72 (inter-quartile range: 29 − 92) days and for female donors it is 93
(inter-quartile range: 25− 131) days. In principle, varying intervals between visits require
continuous-time models, but these models are beyond the scope of this paper. Therefore,
we decided to ignore this feature of the data, and we used the sequential number of the
visit rather than the actual time of the visit. We also take into account the status of the
previous visit (donation or deferral) as a binary covariate in the prediction model. Since
no donations have been made prior to the first visit, the value of donation at previous visit
(DPV) for the first visit is defined to be no donation.
This research has been performed with the approval of the ethical advisory council of the
Sanquin Blood Supply Foundation. Moreover, all donors have given their consent by stat-
ing that part or all of their donations can be used for research aiming at improving the
blood supply chain. Our ethical advisory council includes members of both Sanquin and
non-Sanquin affiliations. This committee includes members with the background training
and experience required for such ethical committees.

Statistical analysis

Since successive Hb levels on the same subject are correlated, we need to employ statistical
models that can take this correlation into account. For this purpose, we applied two well-
known models, namely the transition model and the mixed effects model. However, we
commence with a multiple linear regression model as a benchmark to show the capability
of transition and mixed effects models. These statistical analyses were performed in R (R
Development Core Team, 2010) version 2.15.2 using the stats package for the multiple linear
regression models, the nlme package for the mixed effects models, the KalmanLike and the
mle functions in the stats4 package for the transition models, and the mixAK and pROC
packages to draw profile and ROC curve plots. We used a significance level of α = 0.05

and no correction for multiple testing was implemented.
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Multiple linear regression model

A naive approach to analyze the successive Hb levels is a multiple linear regression model,
in which the current response of a particular subject is regressed only on time-varying
covariates, i.e., age, season, and DPV. A multiple linear regression model can be expressed
as:

yit = α+ β1Age
it
+ β2Seasonit + β3DPVit + εit, (2.1)

where yit is the tth observation of the ith individual, α is an unknown constant (intercept),
and the β’s are unknown regression coefficients. It is assumed that the residuals εit are
normally distributed and mutually independent with mean zero and constant variance,
i.e., εit

iid∼ N(0, σ2
ε). Due to the fact that this model cannot take into account the intra-

subject correlations and the previous Hb levels, it is only presented as a benchmark model
to show the capability of transition and mixed effects models.

Transition model

A transition model, also known as an autoregressive panel data model in the economet-
rics literature, is a dynamic regression model, in which the current response of a particular
subject (donor) is regressed on previous responses of that subject as well as on other co-
variates (Diggle et al., 2002). A transition model of order q can be expressed as:

yit = α+ β1Age
it
+ β2Seasonit + β3DPVit+

q∑
r=1

γr(yit−r − (β1Age
it−r

+ β2Seasonit−r + β3DPVit−r)) + εit, (2.2)

where yit is the tth observation of the ith individual, α is an unknown constant, and the
β’s are unknown regression coefficients, yit−r and (Ageit−r, Seasonit−r, DPVit−r) are rth
lagged response and covariates, respectively and γr is the corresponding coefficient of the
rth lag. Classically it is assumed that the residuals εit are normally distributed and mutu-
ally independent with mean zero and constant variance, i.e., εit

iid∼ N(0, σ2
ε). In a transition

model with order q, the predicted values depend on q lagged previous observations; how-
ever, to calculate the predicted value using 2.2, there are not enough previous observations
for the first few visits of a donor. We employed the method of maximum likelihood via
a linear quadratic estimation (Kalman filter) algorithm to estimate the parameters in the
transition model. This algorithm enables us to calculate the exact likelihood function,
which includes the distribution of the first few observations of each donor (Kalman, 1960;
Harvey and Phillips, 1979; Tsay, 2010). As a result, the maximum likelihood estimation
also includes the information of donors who have made fewer visits than the order of the
transition model.

24



Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016

504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem

2.2. Materials and methods

Linear mixed effects model

The linear mixed effects (LME) model which contains a mixture of fixed effects and ran-
dom effects provides another way to deal with longitudinal responses within a subject.
The correlation among responses pertaining to one subject is now induced by introduc-
ing random effects, which can be regarded as subject-specific terms (Verbeke and Molen-
berghs, 2000; McCulloch and Neuhaus, 2001). A special case of the mixed effects model is
the random intercept model which can be expressed as:

yit = α+ b0i + β1Age
it
+ β2Seasonit + β3DPVit + εit, (2.3)

where α is an unknown constant, the β’s are regression coefficients (fixed effects) and the
bi0 is the random intercept. The random intercept bi0 can be viewed here as the deviation
of the ith subject-specific mean of Hb levels from the population mean of Hb levels. It is
assumed that b0i and εit are normally distributed and mutually independent with mean
zero and different constant variances, i.e., b0i ∼ N(0, σ2

b0), and εit ∼ N(0, σ2
ε) (Molen-

berghs and Verbeke, 2001). Furthermore, in the random intercept model the correlation
between two observations of a subject is constant and is equal to the intra-class correlation

given by ρ =
σ2
b0

σ2
b0

+σ2
ε

(Verbeke and Molenberghs, 2000; McCulloch and Neuhaus, 2001).
Although the simplicity of the mixed model with only random intercept is appealing, it
poses the restriction that the correlation between the repeated measurements remains con-
stant over time. An extension that allows for a more flexible specification of the covari-
ance structure is a mixed model with random intercept and slope; this model introduces
an additional random effects term (e.g., age), and assumes that the rate of change in the
covariates (age) differs between subjects. The mixed effects model with random intercept
and slope can be expressed as:

yit = α+ b0i + (b1i + β1)Age
it
+ β2Seasonit + β3DPVit + εit, (2.4)

where α is an unknown constant, the β’s contains population-specific parameters. bi =

(bi0, bi1) contains subject-specific parameters (intercept and the effects of age) describing
how the evolution of the ith individual deviates from the average evolution in the popula-
tion, and where the residual component εi=(εi1, . . . , εini)

′ is a vector containing the com-
mon error components, with εi∼ N(0,Σi). In this paper, we assumed that Σi = σ2Ini , so
that, conditional on the values of the random effects, a person’s measurements of the Hb
level are independent. However, additional correlation among the errors can be accom-
modated by allowing for a more general covariance structure (e.g., autoregressive) in the
model. It is assumed bi has a bivariate normal distribution with mean zero and a diagonal
covariance matrix, so that εi and bi are mutually independent.
To estimate the parameters in the mixed effects models we employed the method of re-
stricted maximum likelihood (REML). We applied an empirical Bayes method (EB) to pre-
dict a person’s random intercept and slope based on his/her all previous observations
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(McCulloch and Neuhaus, 2001).
We used a likelihood ratio test to choose between the mixed model with random intercept
and the mixed model with random intercept and slope. In this case, the likelihood ratio
test statistic for testing a random slope in the model is a mixture of chi-squared distribu-
tions with 1 and 2 degrees of freedom (Verbeke and Molenberghs, 2000).
Note that the linear mixed effects model is based on quite different assumptions than the
transition model. In principle, if one model is correct, the other model must be wrong.
However, in practice we never know the truth and in fact it is possible that both models
are wrong. Despite this, we can still check which of the two models performs better in
predicting the Hb level.

Prediction performance

To avoid a too optimistic assessment of the model predictions by using the data twice,
i.e., for model building and parameter estimation as well as model evaluation, we have
randomly divided the data set (n = 15, 625 donors) into two parts: a training data set
consisting of all observations of 7,709 donors and a validation data set consisting of all ob-
servations of the remaining 7,916 donors (Kohavi, 1995). The models are estimated using
the training data set, and the model predictions are evaluated using the validation data
set. We used a dynamic prediction approach in the sense that to predict Hb level at a visit
we used the observations of all previous visits, therefore for each visit we updated our
prior information. Since no prior information is available for the first visit, the predicted
values are based only on the sex and age of the donor and the season in which the visit
takes place.
The ultimate purpose of our longitudinal model is to predict future Hb values, given pre-
viously measured Hb values of a blood donor. Two criteria for choosing a model are
Akaike’s information criterion (AIC) (Akaike, 1973) and the related Bayesian information
criterion (BIC) (Schwarz et al., 1978). We report the values of AIC and BIC for the training
data set. In addition, we have chosen to estimate the predictive accuracy using some sim-
ple and intuitively clear measures, i.e., mean squared prediction error (MSPE) as a function
of the visit number. At the tth visit, the MSPE is computed as:

MSPEt =

Nt∑
i=1

(ŷit − yit)
2

Nt
, (2.5)

where ŷit and yit are the predicted and observed values, respectively and Nt is the total
number of subjects at occasion t. MSPEt is a well-known measure to evaluate prediction.
The MSPE values are calculated for the validation data set only.
We also computed the sensitivity and specificity of the predicted values for assessing the
eligibility for donation in the validation data set. Specifically, we computed the proportion
of individuals that are correctly predicted to be eligible for donation based on the clinical
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cut-off value (i.e., an Hb level of at least 8.4 mmol/l and 7.8 mmol/l for men and women,
respectively). However, one may also optimize the cut-off value for the predicted values
to obtain a receiver-operating characteristic (ROC) curve. In this ROC curve, the state vari-
able is a dichotomous variable indicating whether the Hb level is below the clinical cut-off
value of 8.4 mmol/l for men or 7.8 mmol/l for women; the test variable is the predicted
value ŷit. Varying the cut-off value for the predicted value will change the sensitivity to
detect that a donor will be eligible; however the assessment of donors’ eligibility is based
on the clinical cut-off value, which is not changed in the ROC analysis. We calculated the
area under the curve (AUC) to compare the models. The difference in the AUCs between
the models was tested using a bootstrap technique (Robin et al., 2011; Hanley and Mc-
Neil, 1983) that takes into account the correlation between the areas that is induced by the
paired nature of the data.

2.3 Results

Table 2.1 presents descriptive statistics of the training and validation data sets. Different
models are applied on the Sanquin data. We start with a multiple linear regression model
(Model LR) that includes age, season, and donation at previous visit (DPV) as covariates.
This model ignores the correlation among the subsequent hemoglobin values and hence
is not a candidate choice, however, it serves as a benchmark to evaluate the more realistic
models. In addition to the multiple linear regression model, a mixed effects model (Model
LME) and transition (autoregressive) models of different orders are fitted to the training
data set. The transition models are denoted as Models AR(1) to AR(5), where the number
indicates the order of the transition model. The data for male donors supported only
a mixed model with random intercept (p-value= 0.19), but the data for female donors
supported a mixed model with random intercept and slope (p-value < 0.001). Tables 2.2

Table 2.1: Descriptive statistics of the training and validation data sets.

Data set Sex #Donor #Deferral #Cold Season Age: Mean (SD) Visit: Med (IQR)

Training data set Male 3610 769 (4.58%) 10213 (50.05%) 34.57 (12.9) 5 (3)
Female 4306 1596 (9.62%) 10387 (49.71%) 32.66 (12.8) 5 (1)

Total 7916 2365 (7.08)% 20600 (49.88%) 33.53 (12.9) 5 (2)

Validation data set Male 3449 688 (4.27%) 9781 (49.95%) 34.28 (12.6) 5 (3)
Female 4260 1729 (10.41%) 10341 (49.54%) 32.77 (12.8) 5 (2)

Total 7709 2417 (7.38%) 20122 (49.74%) 33.45 (12.7) 5 (2)
Note: SD= Standard deviation, IQR= Interquartile range

and 2.3 display the results of the fitted models on the training data set for male and female
donors, respectively. These tables indicate that all transition effects (regression coefficients
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of past Hb values) are significant, although the effect of previous Hb level decreases with
the lag. The effect of age is negative for male donors and positive for female donors,
these results are consistent with previous studies e.g., see Baart et al. (2011, 2012). During
warm seasons Hb level is lower on average than during cold seasons; this result is also
supported by previous studies e.g., see Hoekstra et al. (2007); Kristal-Boneh et al. (1993).
Furthermore, our models show that having had a donation in the previous visit has a
negative effect on the current Hb level.

Table 2.2: Parameter estimates (standard errors) of the models estimated using the training data set
for male donors.

Parameter Model LR AR(1) AR(2) AR(3) AR(4) AR(5) Model LME

intercept 9.6448 9.6309 9.6441 9.6560 9.6617 9.6633 9.6719
(0.0142) (0.0206) (0.0231) (0.0243) (0.0246) (0.0247) (0.0243)

Age -0.0045 -0.0043 -0.0044 -0.0045 -0.0047 -0.0047 -0.0049
(0.0003) (0.0005) (0.0006) (0.0006) (0.0006) (0.0007) (0.0006)

Season(Warm) -0.0627 -0.0615 -0.0681 -0.0699 -0.0693 -0.0694 -0.0698
(0.0089) (0.0074) (0.0066) (0.0066) (0.0067) (0.0067) (0.0067)

DPV -0.0610 -0.0469 -0.0350 -0.0385 -0.0440 -0.0474 -0.0636
(Donation) (0.0092) (0.0089) (0.0079) (0.0074) (0.0072) (0.0072) (0.0068)
γ1 — 0.5158 0.3685 0.3053 0.2746 0.2630 —

— (0.0061) (0.0068) (0.0076) (0.0082) (0.0087) —
γ2 — — 0.2888 0.2080 0.1766 0.1621 —

— — (0.0078) (0.0087) (0.0084) (0.0091) —
γ3 — — — 0.2207 0.1730 0.1581 —

— — — (0.0095) (0.0104) (0.0109) —
γ4 — — — — 0.1488 0.1257 —

— — — — (0.0123) (0.0129) —
γ5 — — — — — 0.0829 —

— — — — — (0.0167) —

The AIC and BIC values for different models based on the training data set and the
MSPE values based on the validation data set are shown in Table 2.4 for men and women.
The results in Table 2.4 show that, for both sexes, AIC and BIC prefer a 5th order transition
model over transition models that use fewer lagged observations. However, if we include
all models, the smallest AIC and BIC value for the data of female donors are obtained with
the mixed model with random intercept and random slope. The assessment of predictive
accuracy based on MSPE confirms that all transition models and the mixed effects (LME)
model provide much better predictions than the multiple linear regression model. In ad-
dition, the results indicate that the transition model usually provides a better prediction
than the mixed effects model, especially at high visit numbers, see Figure 2.2. Based on the
fitted models, we calculated the predicted Hb levels for donors from the validation data
set and predicted the eligibility (Hb>8.4 for men and Hb>7.8 for women) of a donor at a
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Table 2.3: Parameter estimates (standard errors) of the models estimated using the training data set
for female donors.

Parameter Model LR AR(1) AR(2) AR(3) AR(4) AR(5) Model LME

intercept 8.2737 8.2394 8.2555 8.2678 8.2698 8.2702 8.2832
(0.0123) (0.0164) (0.0180) (0.0186) (0.0187) (0.0187) (0.0181)

Age 0.0042 0.0044 0.0042 0.0040 0.0040 0.0040 0.0037
(0.0003) (0.0004) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

Season(Warm) -0.0347 -0.0405 -0.0415 -0.0413 -0.0415 -0.0415 -0.0411
(0.0078) (0.0062) (0.0060) (0.0062) (0.0061) (0.0061) (0.0062)

DPV -0.1106 -0.1411 -0.1273 -0.1307 -0.1335 -0.1346 -0.1387
(Donation) (0.0079) (0.0075) (0.0067) (0.0064) (0.0063) (0.0063) (0.0060)
γ1 — 0.4669 0.3457 0.3012 0.2878 0.2830 —

— (0.0062) (0.0067) (0.0074) (0.0080) (0.0084) —
γ2 — — 0.2573 0.1963 0.1793 0.1693 —

— — (0.0080) (0.0088) (0.0089) (0.0099) —
γ3 — — — 0.1742 0.1486 0.1360 —

— — — (0.0100) (0.0112) (0.0121) —
γ4 — — — — 0.0831 0.0623 —

— — — — (0.0157) (0.0182) —
γ5 — — — — — 0.0681 —

— — — — — (0.0264) —

Table 2.4: AIC and BIC values for different models for both sexes based on the training data set.

Male donors Female donors

Model AIC BIC MSPE AIC BIC MSPE

Linear Regression 37087.8 37127.2 4.14 35968.9 36008.6 2.29

Mixed Effects 30524.3 30571.6 2.90 30058.0 30113.6 1.75

AR(1) 32051.0 32098.3 3.07 31559.1 31606.7 1.81

AR(2) 30936.4 30991.6 2.85 30664.7 30720.3 1.73

AR(3) 30471.9 30535.0 2.78 30375.1 30438.7 1.71

AR(4) 30342.5 30413.4 2.78 30341.7 30413.2 1.72

AR(5) 30321.4 30400.2 2.79 30325.1 30404.5 1.72

Note: Lower values of AIC, BIC, and MSEP indicate better model fit.
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Male donors Female donors

Figure 2.2: Mean squared prediction error of the linear regression model, the linear mixed effects
model, and the 5th order transition model, as a function of the visit number. The included numbers
of individuals are displayed above the horizontal axis.

particular visit. Figure 2.3 displays the ROC curves for the 5th order transition model and
the mixed effects model for male donors; since the results for female donors are similar,
the ROC curves for female donors are not shown. All observations in the validation data
set (n = 7,916 donors) were used to compute these ROC curves. The AUCs for the tran-
sition model and mixed effects model are 0.83 and 0.81 for men, respectively; for women
we obtained AUC values of 0.73 and 0.72, respectively. The difference in AUCs between
the two models is statistically significant (p-value < 0.001), namely the transition model
has a larger AUC than the mixed effects model and thus offers a better trade-off between
sensitivity and specificity.

2.4 Discussion

In this article, we presented transition models with different numbers of autoregressive
terms and mixed effects models (a mixed effects model with random intercept for male
donors and a mixed effects model with random intercept and random slope based on age
for female donors), as plausible models to account for the dependence among subsequent
Hb levels within a donor and as models to predict the future hemoglobin level.
Based on the results for the validation data set, we showed that the transition model and
the mixed effects model have almost the same predictive accuracy at the first few visits
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Figure 2.3: ROC curves of the prediction of eligibility for donation in male donors, for two different
models. The standard errors of the AUCs are shown in parentheses. Different cut-off points for the
predicted value are displayed on the curves.

of a donor; however, for longer time series the transition model offers somewhat better
predictions.
To give an idea of the predictive performance, we have computed the ROC curve. Our
results confirm that the transition model shows a small but significant improvement in
the AUC compared to the mixed effects model.
Both the transition and the mixed effects models use the data of a persons previous ob-
servations for making predictions. In the transition model only the last q observations are
used for prediction the current response. However, in the mixed effects model, the empir-
ical Bayes method for estimating a persons random effects uses all previous observations.
Therefore, the mixed effects model requires more historical information than the transition
model. Since the transition model is convenient in practice and needs less historical infor-
mation compared to the mixed effects model, blood banks may use this model to predict
the future hemoglobin level of a candidate and to determine which candidates should not
be invited for the next donation.
Our approach of using transition or autoregressive models is quite novel in biomedical
research, however in other fields such as econometrics, autoregressive modeling is a very
well-known technique for tackling correlated financial phenomena and time series prob-
lems (Earnest et al., 2005).
We do not claim that our final model is optimal; further research is needed to arrive at a
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better prediction model. First, the data set used in this paper is unbalanced in the sense
that the time intervals between visits vary considerably, though this was not taken into ac-
count here. Nevertheless, we believe that our paper shows the capabilities of longitudinal
models in prediction and our findings may help reduce the number of deferred candidate
in the blood banks. Second, there are more factors that are possibly associated with Hb
level than those which we have investigated in this study, such as physical activity (Beard
and Tobin, 2000), race (Johnson-Spear and Yip, 1994), nutrition (Brussaard et al., 1997) and
smoking status (Skjelbakken et al., 2006; Kristal-Boneh et al., 1997).
Finally, the ultimate purpose of the prediction exercise is not the prediction of the fu-
ture Hb value, but rather to determine the best time for the donor to return for donation.
Hence, prediction models for Hb levels after blood donation should focus on the optimal
timing of future donations, instead of on predicting future Hb levels. We are currently
investigating such models.
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2.5 Supplementary

R codes to implement the transition model with different order are presented in below.
Note that the “ > “ symbol in the line shown is the prompt in R and not part of what the
user types.

### Required packages

> require(dlm)

> require(stats4)

### Required packages

> Myfunction<-function(par1, par2, par3, par4, par5,

> par6, par7, par8, par9, Data){

### Par1 to par5 are the autoregressive parameters.

### Par6, Par7, and par8 are beta_0, beta_1, and beta_2.

### Par9 is the residuals variance estimate.

> pars<-c(par1,par2,par3,par4,par5)

> Likl<-0

> for (i in 1:length(unique(Data$Id)))

> {

> Data.P<-Data[Data$Id%in%i,]

> DataPerson<-Data.P$Hb-par6-par7*Data.P$Season-par8*Data.P$Age

> Likl<-Likl+dlmLL(DataPerson, mod=dlmModARMA(ar=pars,

> sigma2=par9), debug=TRUE)

> }

> if ((is.na(Likl)) || Likl>10ˆ10) {

> Res<-10ˆ10

> } else{ Res<-Likl }

> }

#### An example of AR(1)

> m1<- mle(Myfunction, start=list(par1=0.3, par6=8,

> par7=0, par8=0, par9=0.3),

> fixed=list(Data=Data, par2=0, par3=0, par4=0, par5=0),

> method="BFGS", control=list(trace=TRUE, REPORT=1,

> reltol=10ˆ-10, maxit=10ˆ3))

> summary(m1)
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#### An example of AR(2)

> m2<- mle(Myfunction, start=list(par1=0.3, par2=0.1,

> par6=8, par7=0, par8=0, par9=0.3),

> fixed=list(Data=Data, par3=0, par4=0, par5=0), method="BFGS",

> control=list(trace=TRUE, REPORT=1, reltol=10ˆ-10, maxit=10ˆ3))

> summary(m2)
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3 Prevalence and

determinants of declining

versus stable hemoglobin

levels in whole blood

donors

This chapter is published as: Nasserinejad K, van Rosmalen J, van den Hurk K, Baart M, Hoek-
stra T, Lesaffre E, and de Kort W. Prevalence and determinants of declining versus stable hemoglobin
levels in whole blood donors. Transfusion, 2015 ;55(8):1955-63. doi: 10.1111/trf.13066
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3. HEMOGLOBIN TRAJECTORY IN BLOOD DONORS

Abstract.

A
too short recovery time after blood donation results in a
gradual depletion of iron stores and a subsequent decline
in hemoglobin (Hb) levels over time. This decline in Hb
levels may depend on individual, unobserved characteris-

tics of the donor. We used a data set of 5388 Dutch blood donors from
the Donor InSight study. The statistical analysis is based on a Bayesian
growth mixture model, which assumes that each donor belongs to one of
several groups. Each group implies a different Hb trajectory, and donors
with similar longitudinal trajectories belong to the same group.
Analyses were performed for male and female donors separately. For
both sexes the model identified four groups of donors. Stable Hb tra-
jectories were found among 14% of male donors and 15% of female
donors; declining Hb trajectories were observed in the remaining groups
of donors. The percentage of donor deferrals differed strongly between
groups. The model can be used to predict to which group a donor be-
longs, and this prediction can be updated after each donation. This is of
high practical importance because early identification of donors with de-
clining Hb levels could help to tailor donation intervals and to prevent
iron deficiency and donor deferrals.
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3.1. Introduction

3.1 Introduction

Whole blood donation poses a risk of iron deficiency to blood donors (Skikne et al., 1984).
A whole blood donation implies a loss of erythrocytes and iron, resulting in a temporary
decrease in hemoglobin (Hb) levels. In healthy donors with sufficient iron stores this may
not be problematic. Iron balance is achieved by more efficient absorption of dietary iron in
blood donors (Skikne et al., 1984). Repeated donations could however deplete iron stores,
leading to iron depletion and ultimately anemia (Skikne et al., 1984; Brittenham, 2011).
Because healthy donors give blood voluntarily, iron depletion and subsequent anemia
should be prevented as much as possible. In the Netherlands, several measures were taken
to prevent donors from becoming anemic. Already in the 1940s, it was estimated that the
body needs around 50 days to recover to pre-donation Hb levels (Fowler and Barer, 1942;
Alstead, 1943). Therefore, guidelines impose a minimum interval of 56 days between do-
nations, with a yearly maximum of 5 donations for men and 3 for women (Baart et al.,
2012). Furthermore, the iron status of blood donors is assessed prior to donation. This
is done by measuring whether Hb levels are ≥ 8.4 mmol/L (135 g/L) for men or ≥ 7.8

mmol/L (125 g/L) for women (Baart et al., 2012). Donors with Hb levels below these cut-
offs, or 1.5 mmol/L (24 g/L) below the previous donation level, are temporarily deferred
from donation. Deferrals can be demoralizing for donors and have a negative effect on
donor return rates (Halperin et al., 1998; Custer et al., 2014; Zou et al., 2008). Hb deferrals
thus decrease the cost-effectiveness of blood supply, because a) testing and deferring a
donor is expensive, b) for every deferred donor another donor needs to be invited to reach
collection targets, and c) lapsing donors need to be replaced (Hillgrove et al., 2011).
Both recent and historical data suggest that individual donors may differ in their recovery
from blood donation, indicating that a donation interval of 56 days may not be desirable
for each individual donor (Fowler and Barer, 1942; Cable et al., 2011). This may result in
gradually declining Hb levels over time, which are currently not detected until the donor
meets any of the deferral criteria. Distinguishing between donors with different Hb trajec-
tories after repeated blood donations may help to select donors and tailor their donation
intervals to prevent anemia. To our knowledge, no data on individual Hb trajectories ex-
ist in literature. Therefore, an objective of this study is to investigate whether different Hb
trajectories can be distinguished in whole blood donors. Also, we determine whether the
type of trajectory is associated with the probability of deferral due to low Hb. Finally, we
aim to predict the type of Hb trajectory of a newly registered blood donor.
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3. HEMOGLOBIN TRAJECTORY IN BLOOD DONORS

3.2 Material and methods

Study population

For blood collection, all measured data are entered into the blood bank computer system
(e)PROGESA (MAK-SYSTEM International Group, France). Prior to every donation, Hb
and other parameters are required to check whether the prospective donor is eligible to
donate. In the Netherlands, a newly registered donor must not donate blood at the first
visit, which consists of a health check only. At every subsequent visit, donors who pass all
eligibility checks can donate 500 ml of whole blood.
For the present study, data are extracted from (e)PROGESA. The Donor InSight data set
is used for data analysis. The Donor InSight data set is a self-administered questionnaire
study aimed at gaining insight into characteristics and motivation of the Dutch donor
population (Atsma et al., 2011). Our analysis comprises whole blood donors who were
registered as a new donor in the period 1 January 2005 to 31 December 2012. To be in-
cluded in the study, they should have at least one visit after the first donation. A total
of 5388 donors (1902 male and 3486 female donors) fulfilled these criteria. The Donor
InSight study was approved by the Medical Ethical Committee Arnhem-Nijmegen in the
Netherlands, and all participants gave their written informed consent.

Data

Capillary Hb is measured as part of routine donor health assessments. All measured Hb
levels from the first Hb measurement up to and including the last donation in 2012 were
used for the analysis, with the following exceptions: 1) If the donor was deferred for low
Hb at one or more of the visits, then Hb levels up to and including the Hb level measured
at the first visit that resulted in a deferral were used. 2) Whole blood donors may change
from giving whole blood to donating plasma, or vice versa. In that case, only Hb levels
measured at whole blood donations before the first plasma donation were used in the
analyses. 3) Donors may quit donating, and register as a new donor again after some
period. For these donors only the Hb measurements from the first donor career were
used.

Statistical methods

To capture the longitudinal trajectories of Hb levels, and the variation in these trajecto-
ries between donors, we implement a growth mixture model (Wang and Bodner, 2007;
Nagin and Odgers, 2010). This model assumes that each donor belongs to one of several
subgroups (known as latent classes in statistical terminology). Using this method, it is
inferred from the data to which class each donor belongs.
The model assigns each donor to one of several groups, in such a way that donors with
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3.2. Material and methods

similar Hb trajectories are in the same group, and that the groups are most different from
each other in terms of the Hb trajectory. The classes typically do not capture the entire
variation in the Hb trajectories. To capture the remaining heterogeneity between donors
in the same class, the Hb trajectory follows a linear mixed model. The outcome in the lin-
ear mixed model is the Hb level. The predictors are age (Yip et al., 1984) at the first visit,
season (Hoekstra et al., 2007; Kristal-Boneh et al., 1993) of the visit (a binary covariate, i.e.,
the cold season includes fall and winter and the warm season includes spring and sum-
mer), a linear and quadratic effect of the time since the previous donation (Rikhtehgaran
et al., 2012), and the number of donations in the last two years (Baart et al., 2012). Male
and female donors have different Hb profiles, therefore the data for men and women are
analyzed using separate statistical models.
Random intercepts and random effects of the number of donations in the last two years
are used to capture the heterogeneity between different donors in the same class. In one of
the latent classes, we impose that there is no effect of the number of donations during the
last two years, so that this class consists of donors with a stable Hb trajectory. This con-
straint enables us to estimate the percentage of donors with a stable trajectory. Finally, we
allow latent class membership to depend on age and the Hb level at the screening visit.
The models are estimated using a Bayesian approach with Markov chain Monte Carlo
(MCMC) sampling. The number of latent classes in the growth mixture model is based
on the Bayesian information criterion (BIC) (Hawkins et al., 2001; Schwarz et al., 1978).
Kaplan-Meier analysis is used to compare the classes with respect to the number of dona-
tions until the first deferral due to low Hb.
Further technical details regarding the linear mixed model, the growth mixture model and
the model for latent class membership are given in the Appendix. Statistical analyses are
performed using Jags (3.4.0) (Plummer, 2011) and R (3.1.0) (R Development Core Team,
2010).

Predicting Hb trajectory

A useful feature of the growth mixture model is that it can be used to predict to which
latent class a donor belongs, and these predictions can be made in a dynamic way. At the
screening visit, the prediction is based only on the observed Hb level and age. At each
subsequent visit, the prediction is updated by taking into account the newly observed Hb
level for that person. The donors are assigned at each visit to the class with the highest
probability, i.e., the class that best fits the observed Hb levels given the donor’s age and
sex. See the Appendix for more explanation of this procedure.
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3. HEMOGLOBIN TRAJECTORY IN BLOOD DONORS

Table 3.1: Descriptive statistics of the Donor InSight data set based on 1902 male and 3486 female
donors.

Variable Male donors Female donors

Donors deferred at least once due to low Hb 18.4% 32.3%
Donations in cold season (fall and winter) 49.9% 49.5%
Age at screening visit (years) 34.8 (24.1, 45.8) 29.4 (21.6, 42.2)
Number of donations 9 (4, 16) 5 (2, 9)
Hb level at screening visit (mmol/l) 9.4 (9.0, 9.9) 8.4 (8.0, 8.8)
Inter-donation interval (days) 90 (74, 126) 138 (120, 188)

Dichotomous variables are presented as percentages, and the other variables are presented using
medians and interquartile ranges.

3.3 Results

Table 3.1 presents descriptive statistics of the Donor InSight data set. Figures 3.1a and 3.1b
show the Hb level profiles of male and female donors, respectively. These graphs show
the heterogeneity of Hb level trajectories. We emphasized the profiles of two donors with
different trajectories (donor I: a donor with a fast Hb recovery or stable Hb trend after
several successive donations, donor II: a donor with a slow Hb recovery or declining tra-
jectory in Hb levels after several successive donations). Based on the BIC, at least 4 classes
are needed for both sexes. A model with 5 classes has slightly better BIC values, but the
additional class has a very small size (1% for males and 5% for females). Therefore, we
selected a model with 4 classes for both sexes. Figures 3.2 and 3.3 show the Hb trajectories
for the model with 4 latent classes, for men and women, respectively. Table 3.2 presents
the main characteristics of the different latent classes, and Table 3.3 presents the parameter
estimates of the growth mixture models with 4 latent classes. The latent classes can be in-
terpreted using the results of these two tables. To allow for an easy comparison of classes
between sexes, we sorted the classes based on the predicted Hb level at the first visit. For
both sexes, class I represents donors with a stable Hb level. 13.5% of the male donors are
in class I. Since these donors have a relatively low average Hb level at the screening visit
(8.7 mmol/l), there are 39.3% deferrals in this group. Class II shows the slowest average
decline of Hb level, but also a lower initial average Hb level, resulting in 21.6% deferrals.
In class III the male donors (37.7%) show a moderate average decline with successive do-
nations. However, because the initial average Hb level of this group is relatively high (9.7
mmol/l), only 10.6% of the donors are deferred. Finally, class IV (10.9%) has the lowest
percentage of deferrals (8.2%), due to the very high initial average Hb level (10.4 mmol/l).
On the other hand, 15.4% of the female donors are in the stable class (class I). These donors
have a low average Hb level at the screening visit (7.8 mmol/l), resulting 66.6% deferrals.
Class II exhibits the slowest average decline of Hb level, but also a lower initial average Hb
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Figure 3.1: Hb level profiles for male and female donors are presented in panels (a) and (b), respec-
tively. The solid and dashed lines indicate different types of Hb trajectories, i.e., donor I represents a
stable Hb trajectory and donor II represents an unstable trajectory.

level, 35.4% deferrals. Class III (28.4%) shows a moderate average decline with successive
donations, but because the initial average Hb level is relatively high (8.7 mmol/l), there
are only 16.6% deferrals. Finally, class IV (12.7%) has the lowest percentage of rejected
donors (15.8%), due to the very high initial average Hb level (9.3 mmol/l). From Table 3.3
we conclude that, for male donors, age at baseline is less strongly associated with Hb level
than for female donors where age at baseline has a positive effect on Hb level. The aver-
age Hb level is higher in cold seasons than in warm seasons for both sexes. Furthermore,
time since previous donation (TSPD) has a non-linear, quadratic, effect on Hb level in both
sexes, with the fastest recovery of Hb occurring shortly after a donation.
To illustrate the different deferral patterns in the four latent classes, Kaplan-Meier (K-M)
curves exhibiting the proportion of deferral in each of the latent classes for each sex sep-
arately are shown in Figure 3.4. The log-rank test indicates significant difference between
these curves (p-value < 0.001, for both sexes), although similar K-M curves are seen for
classes III and IV. Figure 3.5 shows the prediction of the latent class for a male donor with
Hb level of 8.9 mmol/l and age of 29 years at the screening visit. Using the information
available at the screening visit, this donor would be predicted to belong to class II (with
54% probability). However, using Hb levels measured at the first few visits, it is clear
that this donor more likely belongs to class I (i.e., the class with a stable trajectory). For
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Figure 3.2: Hb level trajectories of male donors split up into 4 latent classes. Class sizes are reported
in parentheses. The Hb threshold for the eligibility of donation is shown by a dashed line.
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Figure 3.3: Hb level trajectories of female donors split up into 4 latent classes. Class sizes are reported
in parentheses. The Hb threshold for the eligibility of donation is shown by a dashed line.

43



Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016

504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem

3. HEMOGLOBIN TRAJECTORY IN BLOOD DONORS

Table 3.3: Parameter estimates for male and female donors in the Donor InSight study based on the
growth mixture model with 4 latent classes.

Male donors Female donors

Parameter Estimate 95% CI Estimate 95% CI

InterceptI 8.88 8.81 8.89 7.93 7.85 8.00

InterceptII 9.34 9.27 9.44 8.30 8.24 8.36

InterceptIII 9.84 9.78 9.94 8.77 8.68 8.84

InterceptIV 10.38 10.23 10.59 9.13 9.02 9.25

NODY2II −0.05 −0.06 −0.04 −0.02 −0.04 −0.01
NODY2III −0.06 −0.08 −0.05 −0.06 −0.10 −0.03
NODY2IV −0.09 −0.12 −0.07 −0.14 −0.17 −0.10
Age0(year) 1.7× 10−4 −2.8× 10−3 3.1× 10−3 9.6× 10−3 6.4× 10−3 1.3× 10−2

Warm season −7.7× 10−2 −8.9× 10−2 −6.5× 10−2 −5.2× 10−2 −6.2× 10−2 −4.2× 10−2

TSPD (month) 2.5× 10−2 1.9× 10−2 3.0× 10−2 1.9× 10−2 1.4× 10−2 2.3× 10−2

TSPD2(month) −1.0× 10−4 −1.3× 10−4 −7.3× 10−5 −4.5× 10−5 −6.2× 10−5 −2.8× 10−5

BFD −8.7× 10−4 −3.2× 10−2 3.1× 10−2 8.3× 10−2 5.4× 10−2 11.1× 10−2
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Figure 3.4: Kaplan-Meier (K-M) curves exhibiting the proportion of deferral in each of the latent
classes for male donors (left panel) and female donors (right panel) separately.
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Figure 3.5: Class-membership probabilities at the first nine visits of a male donor with a Hb level of 8.9
and age of 29 years at the screening visit. The first and third columns show the longitudinal trajectory
of observed Hb levels. The second and fourth columns give the corresponding class-membership
probabilities using a pie chart.

example, after the fifth visit the donor has a probability of 91% to belong to class I. In the
primary analysis, we used the number of donations during the last two years to model
the decline in Hb level associated with successive blood donations. In a sensitivity analy-
sis, we fitted the same model with the total number of previous donations. This variable
did not improve the fit of the model. The same is true for the binary variable indicating
whether the person ever had a donation prior to the previous two years.

3.4 Discussion

The results of this study have shown that, for both male and female whole blood donors,
Hb trajectories vary among donors. Our growth mixture model identified four types of
Hb level trajectories. A minority of male and female donors (13.5% and 15.4%) are in class
I, which has a stable Hb trajectory. The donors in the other classes have a declining Hb
trajectory, so that their Hb level shows a significant decline after successive blood dona-
tions. Although their Hb trajectories are stable, the donors in class I have a relatively low
initial Hb level. With increasing class number, the initial Hb level increases, as well as the
speed of the decline. Donors in classes with a relatively low initial Hb level (classes I and
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II) are deferred more frequently than donors in the other classes. A donors latent class
can be predicted and updated after each donation by taking into account the Hb values
measured at subsequent visits.
To the best of our knowledge, the present study is the first to identify different long-term
trajectories of whole-blood donors using longitudinal data from blood banks. Several
studies have shown that the risk of Hb deferral is higher for donors with lower Hb levels
(Baart et al., 2011, 2012; Pasricha et al., 2011). Our data add that many blood donors show
declining Hb trajectories. In previous studies, prediction models for Hb values in whole
blood donors have been developed. These prediction models were proposed as mixed-
effects models, transition models, or a combination of these two approaches for predicting
Hb values in blood donors (Rikhtehgaran et al., 2012; Nasserinejad et al., 2013). The cur-
rent findings suggest that describing the total donor population using a single trajectory
oversimplifies the complex growth patterns of this population. Instead, a growth mixture
modeling approach, which accounts for different subgroups of donors, seems to be an ap-
propriate method for capturing differences in Hb trajectories between donors.
Our results showed that higher age at baseline was associated with higher Hb levels in
female donors. This is consistent with earlier results and can be explained by the effect of
menopause: women stop losing iron with menstruation (Baart et al., 2012). Furthermore,
we showed that on average Hb level is higher in cold seasons than in warm seasons for
both sexes. These findings are consistent with earlier results as well (Hoekstra et al., 2007;
Kristal-Boneh et al., 1993).
Some donors appear to have high initial Hb levels and others do not, and some show
faster declines in Hb than others. This may be due to differences in lifestyle, iron status,
iron metabolism, and/or erythropoiesis (Baart et al., 2012; Soranzo et al., 2009; van der
Harst et al., 2012; Cvejic et al., 2013). Including more of this information in the models
might improve the precision of the prediction of latent classes at the first few visits. For
this reason we aim to include other relevant predictors, including lifestyle and genetic fac-
tors, in future research.
Individual donors belonging to different classes should potentially be approached differ-
ently. For donors with a low but stable Hb trajectory (class I), delaying the next invitation
may not help to decrease the probability of deferral. Donors with a normal initial Hb
level (class II) become at risk for deferral only with a high donation frequency, because
the estimated Hb decline per donation is fairly small in this group (at most 0.09 mmol/l
per donation for men and 0.14 mmol/l per donation for women). Thus for this group,
the advice could be to increase donation intervals. Donors with high initial Hb levels
(classes III and IV) do not have a very high risk of Hb deferral. Changing their donation
intervals may therefore not be very effective in preventing Hb deferral. Apart from Hb
deferral, donors in different classes may also differ in what is healthy for them. The fact
that fast Hb declines do not necessarily lead to Hb levels below the cut-off for donation,
does not mean that it does no harm. Blood donation causes a loss of iron and blood cells,
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which can lead to depleted iron stores and lowering of Hb levels (Amrein et al., 2012).
Potential symptoms of iron deficiency include fatigue, decreased physical endurance and
work capacity, and impairment in attention, concentration and other cognitive functions
(Schiepers et al., 2010; Dallman, 1986; Newman et al., 2006; Popovsky, 2012). Restless legs
syndrome, a neurological disorder with irresistible need to move the legs, and pica, a dis-
order in which a person is craving and consuming nonnutritive substances have also been
repeatedly linked to blood donation-related iron deficiency (Ulfberg and Nyström, 2004;
Birgegård et al., 2010; Bryant et al., 2013; Spencer et al., 2013). Future research should in-
dicate whether adverse health effects of donation are different for donors with stable or
declining Hb levels.
A major strength of the study is the large amount of routinely measured data, including
many repeated measurements per donor. This allowed for detailed insights into Hb tra-
jectories from the initial level to the end of follow up, including the relationships with
donor deferral, age, and sex. A limitation of the study is that Hb is measured by pho-
tometry in capillary blood instead of more reliable hematology analyses in venous blood
(Ziemann et al., 2011). Although this probably increased measurement error for single
measurements, the large amount of repeated measurements likely smoothened this error.
Furthermore, our results may not be generalizable to different ethnic populations or to
blood banks where policies regarding Hb measurement and deferral are different. The
Dutch donor population includes relatively low numbers of people from ethnic minority
groups (Atsma et al., 2011), but this is very common in donor populations (Murphy et al.,
2009). Policies regarding Hb deferral mainly differ in what exactly is measured, capillary
or venous Hb or copper sulfate testing, and in the timing, before or after the donation.
Nonetheless, cut-off values are quite similar throughout the world and the methods used
in the Netherlands are very common (Ziemann et al., 2011).
In conclusion, we found subgroups of donors with stable and declining Hb trajectories.
These subgroups were associated with the probability of Hb deferral and can be predicted
based on initial Hb levels and age. These findings are of high importance for identification
of donors who could benefit from tailored donation intervals to prevent iron deficiency
and donor deferrals. Future research replicating our findings and investigating health
effects of declining Hb levels will help to further unravel clinical implications.
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Appendix

Linear mixed-effects model

Linear mixed-effects models are an important class of statistical models for analyzing lon-
gitudinal data, such as repeated measurements of a donor’s Hb. The random effects in
these models capture the heterogeneity among individuals. The mixed-effects models for
the data of the Donor InSight study can be expressed as:

Hbit = β0 + bi0 + β1Age
i0
+ β2Seasonit + β3TSPDit

+β4TSPD2
it + β5BFDit + (β6 + bi1)NODY2it + εit,

where Hbit is the Hb level at tth observation of the ith individual. TSPDit denotes the
time since previous donation at tth observation of the ith individual and TSPD2

it is the
square of TSPDit. BFDit indicates whether the visit t of donor i precedes the first do-
nation (Yes=1 and No=0). NODY2it stands for the number of donations in the last two
years up to visit t of donor i. β0, β1, β2, β3, β3, β5, and β6 are unknown regression coef-
ficients of intercept, Age (i.e., age at first visit/donation), Season (i.e., the season in which
the donation took place), TSPD, TSPD2, BFD, and NODY2, respectively. The bi0 and bi1

are random intercepts and random slopes, respectively, in the model. We assumed that
the random intercepts and slopes are bivariate normally distributed with mean zero and
different variances. The residuals εit are assumed to be normally distributed and mutu-
ally independent with mean zero and constant variance, and independent of the random
effects.

Growth mixture models

Mixture modeling refers to modeling with categorical latent variables to represent differ-
ent classes in a population (Muthén and Shedden, 1999; McLachlan and Peel, 2004). In
these models, class membership is not known in advance but is inferred from the data. In
growth mixture models (Muthén and Shedden, 1999; Wang and Bodner, 2007) (also known
as latent class mixed models), the principle of mixture modeling is applied in the context
of a linear mixed model, so that the heterogeneity between subjects is captured by differ-
ent classes and by random effects in the linear mixed models (Wang and Bodner, 2007).
The density function of y in a Gaussian growth mixture model can be expressed as:

f(y|λ, θ) =
K∑

k=1

λkfk(y|θk),

where fk(y|θk) (k=1, . . . , K) are density functions that describe the trajectory for each class.
The λks represent the proportion of subjects in each class, and must satisfy 0 ≤ λk ≤ 1

and
∑K

k=1 λk = 1 (McLachlan and Peel, 2004). The vector θk represents the parameters
that are associated with the trajectory of class k.
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Growth mixture model for Donor InSight data set

The growth mixture model for the trajectory of Hb levels of blood donors who belong to
latent class k can be expressed as:

Hbit|k = θk0 + bik0 + β1Age
i0
+ β2Seasonit + β3TSPDit

+β4TSPD2
it + β5BFDit + (θk1 + bik1)NODY2it + εit|k,

where Hbit|k is the predicted Hb level at the tth observation of the ith individual, given
that this individual is in latent class k. θ10, θ20, . . . , θK0 are the unknown intercepts of K
latent classes. Likewise, θ21, θ31, . . . , θK1 are unknown coefficients of NODY2 in the latent
classes. To restrict the Hb trajectory to be stable in the first class, the parameter θ11 and the
variance of the random effect bi11 are set to zero. We assumed that within each latent class
the random effects (i.e., bik0 and bik1) are multivariate normally distributed with mean
zero and a class-specific variance-covariance structure. The residuals εit are assumed to
be normally distributed, and independent of the random effects.
The probability λik that individual i (i = 1, . . . , N) belongs to latent class k (k = 1, . . . ,K)

is related to the initial Hb level and the age at the first visit using a multinomial logistic
regression specification. This probability is calculated as

λik = P (ci = k|Hb0i,Age
0i
) =

exp(γk0 + γk1Age
0i
+ γk2Hb0i)∑K

k=1 exp(γk0 + γk1Age
0i
+ γk2Hb0i)

,

where λik is the probability that the ith individual belongs to class k given the baseline
covariates. The first class is used as a reference class, and therefore the γk = (γk0, γk1, γk2)

parameters for the first class are constrained to be 0.
The optimal number of latent classes is determined using the Bayesian information crite-
rion (BIC). The BIC was computed based on the marginal mean posterior of parameters
(Hawkins et al., 2001; Schwarz et al., 1978; Fraley and Raftery, 2002).

Model diagnostics

To assess model fit, we used a posterior predictive check (PPC) by computing a Bayesian
P-value, i.e., the probability that replicated data from the model could be more extreme
than the observed data for an omnibus χ2 discrepancy measure (Gelman et al., 1996) to
test both the distributional and latent class number assumption of the model.
To check whether the number of MCMC iterations is sufficient to obtain accurate esti-
mates, the sampling was continued until the Monte Carlo errors were less than 5% of
the posterior standard deviation of each parameter (Lesaffre and Lawson, 2012). The first
5,000 iterations (i.e., burn-in iterations) of each chain were discarded. The posterior means
and credible intervals (CI) were calculated using the remaining iterations of each chain,
using no thinning factor. We checked the convergence by monitoring trace plots and
the Geweke diagnostic (Geweke et al., 1991). Finally, to check if donors were assigned
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Table A1: Average class membership probabilities by latent class based on the Donor InSight data.

Mean of Posterior Probabilities
Male donors Female donors

Latent Class Class I Class II Class III Class IV Class I Class II Class III Class IV

Class I 0.795 0.204 0.001 0.000 0.771 0.227 0.002 0.000
Class II 0.135 0.717 0.144 0.004 0.103 0.744 0.142 0.001
Class III 0.001 0.150 0.736 0.113 0.001 0.163 0.680 0.156
Class IV 0.000 0.001 0.191 0.808 0.000 0.008 0.121 0.780

to latent classes with good discrimination, we computed the mean posterior probability
of class membership for donors. These results confirm that our model chooses the class
memberships with a high posterior probability for both sexes (68%-81%); see Table A1.

Prior for parameters

In a Bayesian model, prior distributions must be specified for all parameters. For the one-
class (mixed-effects) model, non-informative proper priors were assigned. For models
with more than one class, to ensure a well-identified model, the priors for the latent class
parameters (θk0 and θk1) were based on the posterior means from the one-class model. To
make these priors less informative, we specified large variances for them, i.e., the number
of donors times the variance of the posterior distribution from the one-class model (Gar-
rett and Zeger, 2000). In addition, for the class-membership parameters, we used normal
prior distributions with mean zero and variance equal to 9/4, as was suggested by Elliott
et al. (2005) and Garrett and Zeger (2000). Finally, for the other model parameters, weakly
informative proper priors were assigned.

Predicting latent class membership

The values λik describe the probability that the ith donor belongs to class k given the age
and the Hb level at the screening visit. As soon as information from subsequent visits
becomes available, these probabilities can be updated to incorporate the new information
and yield better predictions of a donor’s latent class. The updated probability that indi-
vidual i belongs to the kth latent class can be calculated as

P (ci = k|Hbi,Age
0i
,Hb0i, θk) =

λikfk(Hbi|θk)∑K
k=1 λikfk(Hbi|θk)

,

where P (ci = k|Hbi,Age
0i
,Hb0i, θk) is the probability that donor i belongs to the kth

class given the age and the Hb level at the screening visit and the history of Hb levels
for that donor. fk(Hbi|θk) is the density of Hb levels for this donor given that he or she
belongs to class k.
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3.5 Supplementary

Jags codes to implement a latent class mixed-effects model with 4 classes. The first class is
restricted to be stable regarding the number of donations in last two years.

model {

for(j in 1:n) { ### Begin j loop

for(i in offset[j]:(offset[j+1]-1)){ ### Begin i loop

Hb[i]˜dnorm(mu[i],tau)

mu[i]<-beta[1]*Age[j]+beta[2]*Season[i]+

beta[3]*TSPD[i]+beta[4]*TSPD2[i]+

beta[5]*Indicator[i]+

### 1st class

equals(g[j],1)*(theta1[1]+b01[j])+

### 2nd class

equals(g[j],2)*(theta2[1]+b02[j,1]+

(theta2[2]+b02[j,2])*Donation[i])+

### 3rd class

equals(g[j],3)*(theta3[1]+b03[j,1]+

(theta3[2]+b03[j,2])*Donation[i])+

### 4th class

equals(g[j],4)*(theta4[1]+b04[j,1]+

(theta4[2]+b04[j,2])*Donation[i])

} ### End i loop

### Random effects’ priors

b01[j]˜dnorm(0,taub)

b02[j,1:2]˜dmnorm(mub,Omega2[,])

b03[j,1:2]˜dmnorm(mub,Omega3[,])

b04[j,1:2]˜dmnorm(mub,Omega4[,])

### Latent class indicator

g[j] ˜ dcat(psi[j,])

51



Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016

504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem

3. HEMOGLOBIN TRAJECTORY IN BLOOD DONORS

for(class in 1:m) { ### Begin m loop

psi[j,class]<-phi[j,class]/sum(phi[j,])

log(phi[j,class])<-gamma[class,1]+

gamma[class,2]*Age[j]+gamma[class,3]*Hb0[j]

} ### End m loop

} ### End j loop

## Priors for class assignment parameters

for(c1 in 1:3) {gamma[1,c1]<-0}

for(c2 in 1:3) {gamma[2,c2]˜dnorm(0,0.4444)}

for(c3 in 1:3) {gamma[3,c3]˜dnorm(0,0.4444)}

for(c4 in 1:3) {gamma[4,c4]˜dnorm(0,0.4444)}

R[1, 1]<-1.E-3

R[1, 2]<-0

R[2, 1]<-0

R[2, 2]<-1.E-3

Omega2[1:2, 1:2]˜dwish(R, 2)

sigmab2[1:2, 1:2]<-inverse(Omega2[,])

Omega3[1:2, 1:2]˜dwish(R, 2)

sigmab3[1:2, 1:2]<-inverse(Omega3[,])

Omega4[1:2, 1:2]˜dwish(R, 2)

sigmab4[1:2, 1:2]<-inverse(Omega4[,])

taub˜dgamma(1.E-3, 1.E-3)

tau˜dgamma(1.E-3, 1.E-3)

sigma2<-1/tau

sigma<-sqrt(sigma2)

for(k in 1:5) {

beta[k]˜dnorm(0, 1.E-3)

}
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theta1[1]˜dnorm(9.636571, 1.627573)

theta2[1]˜dnorm(9.636571, 1.627573)

theta2[2]˜dnorm(-0.05665738, 47.71125)I(,0)

theta3[1]˜dnorm(9.636571, 1.627573)

theta3[2]˜dnorm(-0.05665738, 47.71125)I(,0)

theta4[1]˜dnorm(9.636571, 1.627573)

theta4[2]˜dnorm(-0.05665738, 47.71125)I(,0)

} ### End

Stan codes to implement a latent class mixed-effects model with 4 classes. The first class
is restricted to be stable regarding the number of donations in last two years.

data {

// Number of latent class

int k ;

// Number of Observations

int ntot ;

// Number of individuals

int n ;

real Age0[ntot] ;

real Age[n] ;

int<lower=1> offset[n+1];

real <lower=0,upper=1> Season[ntot] ;

real <lower=0> TSPD[ntot] ;

real <lower=0> TSPD2[ntot] ;

real <lower=0> Indicator[ntot] ;

real Hb[ntot];

real Hb0[n];

real freqy2[ntot];

}

parameters {

//Random intercepts in class I

real b1[n];
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//Random intercepts and slopes class II

vector[2] b2[n];

//Random intercepts and slopes class III

vector[2] b3[n];

//Random intercepts and slopes class III

vector[2] b4[n];

//Scale parameters Random intercepts class I

real <lower=0,upper=0.2> sigma1b;

//Scale parameters Random intercepts class II

real <lower=0,upper=0.2> sigma21b;

//Scale parameters Random intercepts class III

real <lower=0,upper=0.2> sigma31b;

//Scale parameters Random intercepts class IV

real <lower=0,upper=0.2> sigma41b;

//Scale parameters Random slopes class II

real <lower=0,upper=0.2> sigma22b;

//Scale parameters Random slopes class III

real <lower=0,upper=0.2> sigma32b;

//Scale parameters Random slopes class IV

real <lower=0,upper=0.2> sigma42b;

//scale parameters of mixture components

vector[k-1] gamma[3];

real <lower=0,upper=0.4> sigma;

// Class specific parameters

vector[k] theta1;

// Shared parameters

vector[5] beta;

real <lower=-0.5,upper=0> theta21;
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real <lower=-0.5,upper=0> theta22;

real <lower=-0.5,upper=0> theta23;

}

transformed parameters {

vector[n] pi1; //mixing proportions

vector[n] pi2; //mixing proportions

vector[n] pi3; //mixing proportions

vector[n] pi4; //mixing proportions

vector[n] ppi1; //mixing proportions

vector[n] ppi2; //mixing proportions

vector[n] ppi3; //mixing proportions

for(j in 1:n){

ppi1[j]<-exp(gamma[1,1]+ gamma[2,1]*Age[j]+ gamma[3,1]*Hb0[j]);

ppi2[j]<-exp(gamma[1,2]+ gamma[2,2]*Age[j]+ gamma[3,2]*Hb0[j]);

ppi3[j]<-exp(gamma[1,3]+ gamma[2,3]*Age[j]+ gamma[3,3]*Hb0[j]);

}

for(j in 1:n){

pi1[j]<-ppi1[j]/(ppi1[j]+ppi2[j]+ppi3[j]+1);

pi2[j]<-ppi2[j]/(ppi1[j]+ppi2[j]+ppi3[j]+1);

pi3[j]<-ppi3[j]/(ppi1[j]+ppi2[j]+ppi3[j]+1);

pi4[j]<-1/(ppi1[j]+ppi2[j]+ppi3[j]+1);

}

}

model {

real psi[k];

increment_log_prob(normal_log(gamma[1,1],0,1.5));

increment_log_prob(normal_log(gamma[2,1],0,1.5));

increment_log_prob(normal_log(gamma[3,1],0,1.5));
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increment_log_prob(normal_log(gamma[1,2],0,1.5));

increment_log_prob(normal_log(gamma[2,2],0,1.5));

increment_log_prob(normal_log(gamma[3,2],0,1.5));

increment_log_prob(normal_log(gamma[1,3],0,1.5));

increment_log_prob(normal_log(gamma[2,3],0,1.5));

increment_log_prob(normal_log(gamma[3,3],0,1.5));

//sigma2b˜inv_wishart(2,Rb);

//sigma3b˜inv_wishart(2,Rb);

//sigma4b˜inv_wishart(2,Rb);

sigma1b˜inv_gamma(0.01,0.1);

sigma21b˜inv_gamma(0.005,0.1);

sigma31b˜inv_gamma(0.005,0.1);

sigma41b˜inv_gamma(0.005,0.1);

sigma22b˜inv_gamma(0.005,0.1);

sigma32b˜inv_gamma(0.005,0.1);

sigma42b˜inv_gamma(0.005,0.1);

sigma˜inv_gamma(0.02,0.1);

for (j in 1:n){

increment_log_prob(normal_log(b1[j],0,sigma1b));

increment_log_prob(normal_log(b2[j,1],0,sigma21b));

increment_log_prob(normal_log(b3[j,1],0,sigma31b));

increment_log_prob(normal_log(b4[j,1],0,sigma41b));

increment_log_prob(normal_log(b2[j,2],0,sigma22b));

increment_log_prob(normal_log(b3[j,2],0,sigma32b));

increment_log_prob(normal_log(b4[j,2],0,sigma42b));

//b2[j]˜multi_normal(mub,sigma2b);

//b3[j]˜multi_normal(mub,sigma3b);

//b4[j]˜multi_normal(mub,sigma4b);

}
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increment_log_prob(normal_log(beta,0,1));

increment_log_prob(normal_log(theta1[1],9.63,0.5));

increment_log_prob(normal_log(theta1[2],9.63,0.5));

increment_log_prob(normal_log(theta1[3],9.63,0.5));

increment_log_prob(normal_log(theta1[4],9.63,0.5));

increment_log_prob(normal_log(theta21,-0.06,0.1));

increment_log_prob(normal_log(theta22,-0.06,0.1));

increment_log_prob(normal_log(theta23,-0.06,0.1));

for(j in 1:n)

{

for(i in offset[j]:(offset[j+1]-1)){

psi[1]<- log(pi1[j])+normal_log(Hb[i],theta1[1]+b1[j]+

beta[1]*Age0[i]+beta[2]*Season[i]+beta[3]*TSPD[i]+

beta[4]*TSPD2[i]+beta[5]*d[i], sigma);// Class one

psi[2]<- log(pi2[j])+normal_log(Hb[i],theta1[2]+b2[j,1]+

beta[1]*Age0[i]+beta[2]*Season[i]+beta[3]*TSPD[i]+

beta[4]*TSPD2[i]+beta[5]*d[i]+

(theta21+b2[j,2])*freqy2[i], sigma);// Class two

psi[3]<- log(pi3[j])+normal_log(Hb[i],theta1[3]+b3[j,1]+

beta[1]*Age0[i]+beta[2]*Season[i]+beta[3]*TSPD[i]+

beta[4]*TSPD2[i]+beta[5]*d[i]+

(theta22+b3[j,2])*freqy2[i], sigma);// Class three

psi[4]<- log(pi4[j])+normal_log(Hb[i],theta1[4]+b4[j,1]+

beta[1]*Age0[i]+beta[2]*Season[i]+beta[3]*TSPD[i]+

beta[4]*TSPD2[i]+beta[5]*d[i]+

(theta23+b4[j,2])*freqy2[i], sigma);// Class four

increment_log_prob(log_sum_exp(psi));

}

}

}
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4 Prediction of hemoglobin in

blood donors using

a latent class mixed-effects

transition model

This chapter is published as: Nasserinejad K, van Rosmalen J, de Kort W, Rizopoulos D, and
Lesaffre E. Prediction of hemoglobin in blood donors using a latent class mixed-effects transition
model. Statistics in Medicine, 2016 ;35(4):581-594. doi: 10.1002/sim.6759
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4. PREDICTION OF HEMOGLOBIN IN BLOOD DONORS

Abstract.

B
LOOD donors experience a temporary reduction in their

hemoglobin (Hb) value after donation. At each visit, the Hb
value is measured, and a too low Hb value leads to a deferral
for donation. Because of the recovery process after each do-

nation as well as state dependence and unobserved heterogeneity, lon-
gitudinal data of Hb values of blood donors provide unique statistical
challenges. To estimate the shape and duration of the recovery process,
and to predict future Hb values, we employed three models for the Hb
value: (i) a mixed-effects models; (ii) a latent-class mixed-effects model;
and (iii) a latent-class mixed-effects transition model. In each model, a
flexible function was used to model the recovery process after donation.
The latent classes identify groups of donors with fast or slow recovery
times and donors whose recovery time increases with the number of do-
nations. The transition effect accounts for possible state dependence in
the observed data.
All models were estimated in a Bayesian way, using data of new entrant
donors from the Donor InSight study. Informative priors were used for
parameters of the recovery process that were not identified using the
observed data, based on results from the clinical literature. The results
show that the latent-class mixed-effects transition model fits the data
best, which illustrates the importance of modeling state dependence,
unobserved heterogeneity, and the recovery process after donation. The
estimated recovery time is much longer than the current minimum inter-
val between donations, suggesting that an increase of this interval may
be warranted.
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4.1. Introduction

4.1 Introduction

Blood donation helps to save millions of lives each year and is an essential part of modern
healthcare. Many blood donors come for donation on a regular basis. A blood donation
implies a loss of erythrocytes and iron, resulting in a temporary decrease in hemoglobin
(Hb) values. The minimum interval between two donations is internationally set at 8
weeks but this interval seems to be too short for the body to completely recover the Hb
value to its pre-donation value. Previous studies have shown that among donors with
many visits, there is a decline in their Hb values at subsequent donations (Cable et al.,
2011; Brittenham, 2011). Low Hb values may potentially lead to anemia, which should be
prevented. In the majority of blood banks, the Hb value is first measured to screen the po-
tential donor for eligibility to give blood (Radtke et al., 2005). To protect potential donors
from developing low Hb values, a Hb value of 8.4 mmol/l (135 g/l) and 7.8 mmol/l (125
g/l) for men and women, respectively, is widely accepted as the lower cut-off value of
eligibility for donation (Radtke et al., 2005).
Each year a considerable proportion of prospective blood donors are temporarily deferred
from donation due to low Hb values (Newman, 2004; Popovsky, 2012). Hb deferrals de-
crease the cost-effectiveness of blood supply, because a) testing and deferring a donor is
expensive, b) for every deferred donor another donor needs to be invited to reach col-
lection targets, and c) lapsing donors need to be replaced by new donors since deferred
candidates rarely return for donation (Halperin et al., 1998).
To limit the number of deferrals, it is important that blood banks are able to predict when
donors have sufficiently recovered after a blood donation to be invited for a new dona-
tion. However, prediction of the Hb value for the subsequent visit of a blood donor is
not straightforward. Longitudinal data of Hb values of blood donors have a high within-
subject and between-subject variability due to unobserved individual heterogeneity and
state dependence (Heckman, 1981). This requires a complex statistical model to capture
both sources of variation for proper inference. Predictions of future Hb values of blood
donors may be used to improve the invitation policy of potential blood donors.
Hence, for a model to be appropriate, two sources of variation among Hb values must
be taken into account. There are various statistical techniques for analyzing longitudinal
data. Two well-known approaches are a) the mixed-effects model, which can capture un-
observed individual heterogeneity and b) the transition (auto-regressive) model, which
can capture state dependence within an individual’s observations. However, it may be
that neither approach can adequately explain the correlation structure alone, due to the
presence of both unobserved heterogeneity and state dependence. For these reasons, we
may combine the mixed-effects model and the transition model by including the unob-
served individual-specific effects and a lagged endogenous variable in a single regression
model. Such a mixed-effects transition model is popular in econometrics for forecasting
(Diggle et al., 2002), but less commonly used in medical applications (Funatogawa and
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4. PREDICTION OF HEMOGLOBIN IN BLOOD DONORS

Funatogawa, 2012).
This paper aims to build an appropriate mixed-effects transition model for a longitudinal
data set of Hb values collected from new entrant whole blood donors from 2005 to 2012
in the Netherlands. We not only wish to predict the future Hb value but also the recovery
time that is needed for Hb to return to its pre-donation value after a blood donation. This
will help to improve the planning of the donors’ visits to the blood bank. Predicting Hb
value has been studied previously by Rikhtehgaran et al. (2012) and Nasserinejad et al.
(2013). In the latter study, the authors applied mixed-effect models and transition models
separately to predict the Hb value. In the former study, a mixed-effects transition model
was applied on a subset of the longitudinal data, excluding all measurements after the
candidate was deferred from donation for any reason. Recently, Nasserinejad et al. (2015)
used a latent class mixed-effects model to show how the trajectories of Hb values differ
between donors.
The main contribution of this paper is the development of a realistic model for longitu-
dinal Hb values. This model takes into account the unique aspects of these data, namely
a) heterogeneity of the initial Hb value, b) state dependence of a donor's Hb values, c)
varying time intervals between donations, d) the temporary reduction in Hb after blood
donation, and e) the fact that the recovery process may change with the number of do-
nations and may differ between donors. To do so, the mixed-effects transition model is
combined with a flexible nonlinear specification for the recovery process, which enables
us to estimate the shape and duration of the recovery, for which precise estimates are not
available in the clinical literature. Latent classes are used to account for the heterogeneity
of the recovery process between donors, and a time change point specification is used to
determine how the recovery time changes with the number of donations. The observed
data do not provide sufficient information to identify all model parameters in a frequentist
setting. A further contribution of this paper is that it is shown how the model parameters
can be estimated in a Bayesian way, using suitable prior information from the clinical liter-
ature. Finally, it is shown how to forecast a future Hb value based on the available history
of donations in a fully Bayesian approach.
The remainder of the paper is organized as follows: Section 4.2 presents the motivating
data set. Section 4.3 introduces the statistical models for the recovery process and the do-
nation problem described above. Results are presented in Section 4.4. Section 4.5 deals
with prediction in the latent class mixed-effects transition model. We discuss the findings
of the study in Section 4.6.

4.2 Sanquin blood donor data set

The Donor InSight data set was collected by Sanquin Blood Supply in the Netherlands
(Atsma et al., 2011). This data set is based on a self-administered questionnaire study
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4.2. Sanquin blood donor data set
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Figure 4.1: Interval distributions for three different visits (i.e., 5th, 10th, and 20th visit) are shown for
each sex, separately.

aimed at gaining insight into characteristics and motivation of the Dutch donor popula-
tion (Atsma et al., 2011). Our analysis comprises whole blood donors who were registered
as a new donor from 1 January 2005 to 31 December 2012. Whole blood is a term used in
transfusion medicine for a standard blood donation as opposed to plasma and platelet do-
nation. To be included in the study, the donors must have had at least one visit after a first
donation. A total of 4461 donors (1552 male and 2909 female donors) fulfilled these crite-
ria. The descriptive statistics of these donors are presented in Table 4.1. Figure 4.1 shows
the interval distributions for the 5th, the 10th, and the 20th visit for each sex separately.

Table 4.1: Descriptive statistics of the Donor InSight data set.

Male Female

Age at 1st visit∗ (year) 35 (25 - 47) 30 (22 - 43)
Number of donations∗ 12 (6 - 19) 7 (4 - 13)
Visit intervals∗ (day) 89 (73 - 119) 130 (116 - 168)
Deferral due to low Hb 5.29% 11.38%
Donors with at least one deferral due to low Hb 36.92% 54.40%
∗ Median and inter-quantile range.
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4. PREDICTION OF HEMOGLOBIN IN BLOOD DONORS

For blood collection, all measured data were entered into the blood bank computer
system (e)PROGESA (MAK-SYSTEM International Group, France). Prior to donation, Hb
and other parameters undergo a check to determine whether the prospective donor is eli-
gible. In the Netherlands, a newly registered donor is not allowed to donate blood at the
first visit, the screening visit, which consists of a health check only. At every subsequent
visit, donors who pass all eligibility checks may donate 500 ml of whole blood. Finally,
guidelines impose a minimum interval of 56 days between donations, with a yearly max-
imum of 5 donations for men and 3 for women (Baart et al., 2011).
In Figure 4.2, profiles of the Hb value after the screening visit for a subset of male and
female donors are displayed. The horizontal lines represent the eligibility thresholds for
donation.
Several factors are known to be associated with the Hb value and hence may be used as
predictors for Hb, i.e., sex (Yip et al., 1984), season (Hoekstra et al., 2007), age (Yip et al.,
1984), and body mass index (BMI) (Yip et al., 1984). In this study, we take into account
the effect of age at first visit and the season of the visit (a binary covariate, i.e., the cold
season includes fall and winter and the warm season includes spring and summer). Be-
cause male and female donors have different Hb profiles, we analyze the data for men
and women separately. The Donor InSight study was approved by the Medical Ethical
Committee Arnhem-Nijmegen in the Netherlands and all participants gave their written
informed consent.
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Figure 4.2: Hb profiles after the screening visit for a subset of male and female donors. Five random
profiles are highlighted for both sexes. The bold dashed lines show the corresponding thresholds of
eligibility for donation.

4.3 Statistical model for Hb values

In this section, we propose a mixed-effects model, a latent class mixed-effects model and
a latent class mixed-effects transition model for the Donor InSight data. Formally, let Hbit

denote the Hb recorded for the ith individual (i = 1, . . . , N) at Ti different times (t =

1, . . . , Ti), together with a set of p strictly exogenous covariates xit = {xi1t, xi2t, . . . , xipt}′.
Since the donation intervals are not equal, the data set is unbalanced (see Figure 4.1).
Furthermore, there is a reduction in Hb value after donation. Since the current Hb value
is associated with the Hb value observed at the previous visit (Rikhtehgaran et al., 2012;
Nasserinejad et al., 2013) and the time the since previous donation (Rikhtehgaran et al.,
2012; Nasserinejad et al., 2015), we need to take into account the time interval since the
previous donation and the reduction in Hb due to donation. All of these aspects must be
incorporated into the statistical model for predicting Hb.

Hb recovery after blood donation

The Hb recovery process after blood donation is illustrated in Figure 4.3. In this figure δ

indicates the time that Hb reaches its minimum value after donation. After donation of
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Figure 4.3: Hb recovery process after blood donation: δ indicates the time that Hb reaches its min-
imum value after donation, RT indicates the recovery time that is needed for Hb to return to its
pre-donation value, and θ shows the amount of reduction in Hb after donation.

500 ml of blood, on average a male donor loses 242 mg and a female donor 217 mg of iron
(Simon, 2002). This will cause Hb to decrease and to reach its nadir a few days after dona-
tion (Boulton, 2004; Wadsworth, 1955; Kiss et al., 2015). The Hb value will then gradually
recover to its pre-donation value (Boulton, 2004; Wadsworth, 1955; Kiss et al., 2015). The
recovery time needed for Hbit to return to its pre-donation value is given by RT. Unfortu-
nately in this study we have only the Hb value prior to donation at each visit, and there
is no information on the Hb value between two invitations. The observed interdonation
interval is at least 56 days in our data set. Therefore, we cannot accurately estimate the
trajectory of Hb value during the first 56 days after donation. We incorporate into our
model that the reduction of Hb after giving blood takes around three days (Boulton, 2004;
Kiss et al., 2015). To estimate the amount of reduction after donation, we use the results
of a recent randomized clinical trial on iron supplementation after blood donation. The
donor characteristics and the donation policy in this trial were similar to the Dutch setting
of the Donor InSight study; the amount of blood given per donation and the minimum
interval between donations are the same for both data sets. The data of this trial showed
that, 3 through 8 days after donation of 500 mL of whole blood, the amount of reduction
in the Hb value had a mean (95% CI) of 0.68 (0.59, 0.77) and 0.96 (0.89, 1.03) mmol/l for
male and female donors, respectively (Kiss et al., 2015). We use the following Hb recovery
function (HRF):

HRFit = θ

[
max

(
RT − (TSPDit − δ)

RT
, 0

)]ψ

, (4.1)

where HRFit is the amount Hb that needs to be recovered for person i at time t. δ and RT
were defined above and θ is the amount of Hb reduction. TSPDit represents the time since
the previous donation for the ith donor at time t. The parameter ψ indicates the shape of
the recovery function of the Hb value after donation. Values of ψ smaller than one indi-
cate a convex trajectory for Hb recovery, while values greater than one indicate a concave
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4.3. Statistical model for Hb values

trajectory for Hb recovery (as in Figure 4.3). For ψ = 1, the Hb recovery is linear.
The recovery time may differ between donors due to diet, genetic factors, and other un-
observed characteristics. In addition, some donors experience a reduction of their iron
reserve after a few donations, which may cause the recovery time to increase with the
number of donations. Therefore, the postulated function based on (4.1) can oversimplify
the recovery process, because the recovery time (RT) may depend on the number of pre-
vious donations as well as the donor. However, a too flexible function (e.g., a different
recovery time for each donor) is likely not to be estimable from the data. So, we use finite
mixture modeling to capture the heterogeneity in recovery time by assuming that donors
belong to two different latent classes. Namely, one class of donors is assumed to have a
constant recovery time and the other class is assumed to exhibit a nonconstant recovery
time. The function could be:

HRFit,g(i),κ = θ

[
max

(
RTg(i),κ − (TSPDit − δ)

RTg(i),κ

, 0

)]ψ

, (4.2)

where g(i) is the latent class membership of donor i, which has to be estimated from the
data. It is assumed that donors who belong to (latent) class I (g(i) = 1) have a constant
recovery time. For donors in class II, it is assumed that the recovery time changes after a
certain number of donations (κ). This change point κ is assumed equal for all people in
class II and must be estimated from the data.

Mixed-effects model

To accumulate the effects of the donation and recovery process a non-linear model making
use of (4.1) or (4.2) is needed. To also take into account the unobserved individual hetero-
geneity a random intercept is included. Therefore a possible model with (4.1) as recovery
function could be:

Model 1: Hbit = β0 + bi1 + β1Age
i1
+ β2Seasonit − HRFit + εit, t = 1, . . . , Ti (4.3)

where bi1 is the random intercept in the model to control heterogeneity. It is assumed that
εit

iid∼ N(0, σ2
ε) and bi1

iid∼ N(0, σ2
b1) and that bi1 and εit are mutually independent.

Latent class mixed-effects model

To take into account the heterogeneity in recovery time in Model 1, a possible model based
on (4.2) as recovery function could be:

Model 2: Hbit = β0+bi1+β1Age
i1
+β2Seasonit−HRFit,g(i),κ+εit, t = 1, . . . , Ti (4.4)
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4. PREDICTION OF HEMOGLOBIN IN BLOOD DONORS

Latent class mixed-effects transition model

To take into account the state dependence among Hb values of the same individual, one
can add a first lag of Hb as an autoregressive term to Model 2. Because the recovery
process depends on the time since the last donation, we also use the Hb value at the last
donation (instead of the last visit) as an autoregressive term. This model is given by:

Model 3: Hbit = β0 + bi1 + β1Age
i1
+ β2Seasonit+

γHb.pd
it
− HRFit,g(i),κ + εit, t = 2, . . . , Ti (4.5)

where bi1 controls the heterogeneity now partly explaining the intra-subject correlation,
γ is the lagged impact of Hb at the previous donation (Hb.pd

it
). Note that Hb.pd

it
is

equal to Hbi,t−1 if the last visit was a donation. For a stationary process, i.e., |γ| < 1, the
correlation between two subsequent measurements, can be expressed as (Rikhtehgaran
et al., 2012):

ρHbit,Hbit−1 = γ +
1− γ

1 + (1− γ)σ2
ε/[(1 + γ)σ2

b1]
, (4.6)

when the lag impact γ is negligible, this correlation reduces to the intra-class correlation
(ICC) in the mixed-effects model. On the other hand, when there is no heterogeneity
between individuals, i.e., σ2

b1 ≈ 0, the correlation is equal to the lag impact only.

The initial conditions problem

One of the assumptions in classical mixed-effects models is that the covariates in the model
are exogenous, i.e., the covariance between covariates and the random effects are zero. But
this assumption is violated in mixed-effects transition models where one of the covariates
is the lagged variable, which is endogenous. This issue relates to the initial conditions
problem (ICP), which is well-known in the econometric literature. The ICP occurs due
to the fact that the individual effects, bi1, that capture the unobserved heterogeneity are
correlated with the initial Hb values, i.e., cov(Hbi1, bi1) �= 0 (Kazemi and Davies, 2002;
Kazemi and Crouchley, 2006). Ignoring the ICP and thus the endogeneity of Hbi1 results
in inconsistent estimates in the model (Kazemi and Davies, 2002; Kazemi and Crouchley,
2006), i.e., an upward bias of the estimated state dependence and a downward bias in the
estimated coefficients of explanatory variables (Kazemi and Crouchley, 2006).
A possible solution to the ICP problem is to incorporate the association of the initial value
and the random effects jointly into the model for the subsequent Hb values. The model is
assumed to be similar to the dynamic equations (Models 2 and 3), but without the lagged
response variables (Kazemi and Crouchley, 2006). Using this solution, the regression pa-
rameters as well as the residual variance are allowed to differ between the initial and the
subsequent observations. The joint modeling approach enables one to capture the corre-
lation between the individual effects, bi1, and the initial Hb values and provides reliable
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estimates for the regression parameters (Kazemi and Crouchley, 2006). A possible model
for the initial Hb values could be:

Model 30: Hbi1 = β00 + β01Age
i1
+ β02Seasoni1 + bi0, (4.7)

where bi0 ∼ N(0, σ2
b0). Furthermore, we allow for a correlation ρ01 between bi0 and bi1 in

Model 3.
Due to the complexity of the models as well as the lack of information on the first 56 days
of the recovery process, we opted for a Bayesian approach with Markov chain Monte Carlo
(MCMC) sampling to estimate the parameters in these models.

Prior specification

Vague normal priors were specified for the β’s in Model 1, Model 2, and Model 30, and for
the β’s and γ in Model 3, i.e., N(0, 103). Since Hb is measured only at visits to the blood
bank, and the minimum interval between donations is 56 days, the current data provide
little information on the parameters θ and δ. Therefore, we used informative priors for
the amount of Hb reduction after donation, θ, and the time at which Hb value reaches
its minimum value, δ. The parameters of the informative prior distributions are based on
previous clinical studies (Boulton, 2004). For θ, we specified a normal prior with mean 0.68
and standard deviation 0.038 for male donors and a normal prior with mean 0.96 and stan-
dard deviation 0.045 for female donors, based on the results of a recent clinical trial (Kiss
et al., 2015). For δ, a normal prior with mean 3 and variance equal to 0.1 was specified.
For the recovery time RT, a positive uniform distribution with a wide range, i.e., U(0, 104)

was specified. For the parameter ψ, which indicates the shape of the recovery trend, an ex-
ponential of normal distribution, i.e., N(0, 10) was specified. An IG(ε, ε) prior with small
value for ε, i.e., 10−3, was specified for the variance of the residuals. An Inv-Wishart(R,
df) distribution was specified for the variance-covariance structure of the residuals bi0 in
Model 30 and the random intercept bi1 in Model 3. We set the degrees of freedom, df, to 3
and the scale parameter matrix, R, to a diagonal matrix with small values, i.e., 10−3 (Lesaf-
fre and Lawson, 2012). For the class membership probability a Dirichlet distribution with
small values (i.e., 0.1) for the mixing distribution was specified (Rousseau and Mengersen,
2011). We chose a discrete uniform distribution for κ with range from 1 to the maximum
number of donations, i.e., 43 and 26 for male and female donors, respectively. Finally,
prior sensitivity analyses were performed for the non-informative prior distributions.

Model fit and assessment

To be able to validate the model, we randomly divided the available donors into a train-
ing data set (2,231 donors) and a validation data set (2,230 donors). All statistical models
were estimated using the training data set only. Parameter estimates were obtained using
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the JAGS (Plummer, 2011) interface to R (R Development Core Team, 2010); the JAGS syn-
tax is shown in the Appendix. The first 10,000 iterations (i.e., burn-in iterations) of each
chain were discarded. The posterior medians and 95% HPD credible intervals (CI) were
calculated using the remaining iterations of each chain, using a thinning factor of 10. We
checked the convergence by running two chains from dispersed initial values and examin-
ing standard Bayesian diagnostics, such as trace plots, the Brooks-Gelman-Rubin statistics
(Gelman et al., 2014), and the Geweke diagnostic (Geweke et al., 1991). To check whether
the number of MCMC iterations was sufficient to obtain accurate estimates, sampling was
continued until the Monte Carlo errors were less than 5% of the posterior standard devia-
tion of each parameter (Lesaffre and Lawson, 2012). The label switching problem can not
occur in Models 2 and 3, because one class in these models was restricted to have a stable
recovery time.
To find the best fitting model for the data, we computed the deviance information crite-
rion (DIC) (Spiegelhalter et al., 2002). The DIC was computed outside Jags using a self-
written R program (R Development Core Team, 2010) based on MCMC and the data used
to fit the models. For this calculation the expectations of the class-membership and time
change point parameters were chosen based on the mode and for the other parameters
this expectation was based on the median. Finally, to assess goodness-of-fit, we used an
omnibus posterior predictive check (PPC) (Gelman et al., 1996). We generated Hb values
given the parameters (Φ) from a random sample of draws from the posterior distribution
and calculated the chi-square statistic

X2 =
∑

(Hbit − E(Hbit|Φ))T Var(Hbit|Φ)−1(Hbit − E(Hbit|Φ))

for both replicated and observed Hb values at each iteration. Then we computed a
Bayesian P-value, i.e., the probability that X2 based on the replicated data from the model
is more extreme than the X2 based on the observed data. Small or large values of this
P-value (e.g., < 0.05 or > 0.95) indicate a poor fit of the model to the data (Gelman et al.,
1996).

Simulation study

To evaluate the ability of the proposed model to estimate the true parameters, we per-
formed a simulation study using 20 artificially generated data sets. In each data set Hb val-
ues and covariates of 200 male donors were generated according to Model 3 and Model 30,
using the posterior medians of the parameters estimated using the Sanquin data set. In the
simulated data, donors were only allowed to donate if the Hb value was above the cut-
off for eligibility. The distributions of age, season and the number of visits per donor
were simulated from the observed data for male donors. For each model parameter, the
posterior median and the exceedance probability (i.e., the posterior probability that the es-
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timated parameter is greater than the true value) were calculated for each generated data
set.

4.4 Results

Donor InSight study results

The DICs for different models are presented in Table 4.2. The results show that Model 3
is the best model for both sexes. For this model, the Bayesian P-value of the PPC is 0.48
and 0.43 for males and females, respectively, which indicates that the model assumptions
appear to be satisfied. The parameter estimates based on Model 3 (and Model 30) for both
sexes are presented in Table 4.3. Based on the highest posterior probability, donors can be

Table 4.2: The effective number of parameters (pD), and the deviance information criterion (DIC) for
different models for each sex.

Male Female

Model pD DIC pD DIC

Model 1 691 16189 1237 19576
Model 2 809 15360 1475 19211
Model 3 (and Model 30) 557 14230 1185 17397

assigned to latent classes. For Model 3 (and Model 30) 48.7% and 45.7% of the male and
female donors, respectively, are assigned to the class with a nonconstant recovery time
(class II). In class II the recovery time change point (κ) for male and female donors is at 7th
and 4th donation, respectively. The profiles of the different classes for male and female
donors are displayed in Figure 4.4 and Figure 4.5, respectively. The arrows in these figures
indicate the recovery time change points. To contrast the two latent classes, sex-specific
descriptive statistics including the average of the time since previous donation (day), age
(year), percentage of deferral due to low Hb values, percentage of donors with at least
one deferral due to low Hb values, and number of donations are presented in Table 4.4.
These results show that the two classes are dramatically different in their percentage of
deferral and the percentage of donors with at least one deferral due due to low Hb val-
ues. To determine the class membership discrimination, we computed the mean posterior
probability of class membership for donors and report the results in Table 4.5. The mean
posterior probability of the class to which a donor is assigned is approximately 70%. The
estimated recovery time (95% CI) in class I is 100 (69, 145) and 54 (20, 129) days for male
and female donors, respectively. These values are 117 (80, 168) and 343 (270, 450) days for
male and female donors, respectively prior to the change point in class II and increase to
419 (293, 663) and 503 (394, 665) days after the change, much larger than the minimum
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Table 4.3: The posterior medians and 95% HPD CIs based on Model 3 and Model 30 for male and
female donors, separately.

Male donors Female donors

Parameter Estimate 95% CI Estimate 95% CI

β0 7.87 7.65 8.09 6.96 6.78 7.15
β1 -0.004 -0.006 -0.002 0.003 0.002 0.005
β2 -0.082 -0.100 -0.064 -0.068 -0.084 -0.053
γ 0.19 0.17 0.21 0.17 0.15 0.19
θ 0.70 0.64 0.76 0.89 0.82 0.96
δ 2.98 2.39 3.60 2.98 2.32 3.58
ψ 2.18 1.49 3.61 3.61 2.26 4.04
κ 7 7 8 4 4 5
RTg1 100 69 145 54 20 129
RTg21 117 80 168 343 270 450
RTg22 419 293 663 503 394 665
σb1 0.34 0.31 0.35 0.29 0.28 0.31
σ 0.46 0.45 0.47 0.44 0.43 0.45
ρbi1,Hbi1 0.67 0.64 0.69 0.61 0.58 0.63

Table 4.4: Sex-specific descriptive statistics for the two classes pertaining to Model 3 (and Model 30).

Male Female

Class I Class II Class I Class II

Class size 54.3% 45.7% 51.3% 48.7%
Age at 1st visit∗ (year) 36 (27 - 46) 33 (25 - 45) 31 (22 - 46) 27 (21 - 41)
Number of donations∗ 11 (6 - 17) 12 (6 - 20) 8 (4 - 13) 6 (4 - 11)
Visit intervals∗ (day) 90 (73 - 124) 86 (72 - 115) 133 (119 - 175) 134 (119 - 180)
Deferral due to low Hb 0.9% 4.7% 4.5% 13.7%
Donors with at least one deferral due to low Hb 6% 31% 25% 57%
∗ Median and inter-quantile range.

(56 days) intra-donation interval. These results show a longer recovery time for female
donors than for male donors in class II, though the uncertainty in the estimates is large.
The lag impact of Hb for male and female (0.19 and 0.17, respectively) is highly significant,
which shows that there is strong evidence for the state dependence between successive Hb
values. This can also be induced from the estimated correlation between two successive
observations in Models 2 and 3. For Model 2 the correlation (95% CI) is estimated as 0.45
(0.42, 0.48) and 0.42 (0.39, 0.44) between two successive observations in male and female
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Figure 4.4: Male Hb profiles after screening visit separately for each class obtained from Model 3
(and Model 30). The donors assigned to the highest class probability. The horizontal lines show the
threshold for donation eligibility. The arrow shows the recovery time change point.

Table 4.5: Average class probabilities by latent classes for both sexes based on Model 3 (and Model
30).

Mean of posterior probabilities

Male Female

Latent Class Class I Class II Class I Class II

Class I 0.70 0.30 0.72 0.28
Class II 0.28 0.72 0.29 0.71

donors, respectively (not shown here). For Model 3, these correlations increase to 0.54
(0.51, 0.57) and 0.49 (0.46, 0.52) for male and female donors, respectively.
The posterior distributions for θ and δ are very close to the corresponding prior distribu-
tions. The prior and posterior means (95% CI) of θ for male donors were 0.68 (0.59, 0.77)
and 0.70 (0.64, 0.76), respectively; these values for female donors were 0.96 (0.82, 1.03) and
0.89 (0.82, 0.96), respectively. The prior and posterior means (95% CI) of δ for male donors
were 3.00 (2.38, 3.62) and 2.98 (2.39, 3.60), respectively; these values for female donors
were 3.00 (2.38, 3.62) and 2.98 (2.32, 3.58), respectively. These results indicate that there is
little information in the data to estimate these parameters, so that the posterior results are
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Figure 4.5: Female Hb profiles after screening visit separately for each class obtained from Model 3
(and Model 30). The donors assigned to the highest class probability. The horizontal lines show the
threshold for donation eligibility. The arrow shows the recovery time change point.

determined by the informative priors.
The shape parameter ψ is estimated greater than one in both sexes, which means that the
estimated recovery process is a concave curve. That is, the Hb recovery at the beginning
is fast and becomes slower over time. This corresponds to the function exhibited in Figure
4.3. Finally, the Pearson correlation of initial Hb values and random intercepts in the main
model is 0.67 (0.64, 0.69) and 0.61 (0.58, 0.63) for male and female donors respectively,
which shows the importance of the ICP.
To compare the prediction accuracy between different models, we used the results of the
training data set to predict the Hb values in the validation data set. Figure 4.6 shows the
mean square error (MSE) values during successive donations across these donors for dif-
ferent models. The graph illustrates the superiority of Model 3 compared with Model 2
and Model 1. The prior sensitivity analyses showed that the posterior results are stable
with respect to reasonable choices for the non-informative priors (e.g., a truncated normal
distribution with mean zero and standard deviation of 1000 for the recovery times yielded
similar results). We also checked the sensitivity of the posterior results by using a less in-
formative prior for θ (i.e., prior standard deviation increased by a factor 4) and δ (i.e., prior
standard deviation increased by a factor 10). Since there is little information in the data
about δ and θ, using less informative priors for these parameters, different results might be
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Figure 4.6: The mean square error (MSE) values for different models at successive donation numbers
for male and female donors (male donors in the left panel, female donors in the right panel) in the
validation data set.

gotten for parameter estimates of the recovery function. This would have been treated as
a weakness of the analysis, but this is actually the strength of a Bayesian analysis. Namely
it is the approach that allows to include such information in an elegant manner. Detailed
results of these sensitivity analyses are presented in Table 4.6 and Table 4.7.

Simulation results

The results of Model 3 (and Model 30) for 20 artificially generated data sets of male donors
are presented in Table 4.8. This table shows the true parameter values used to gener-
ate these data, the overall mean (over all 20 simulations) of the posterior medians of the
parameters, and the mean (over all simulations) of the corresponding exceedance prob-
abilities. Extreme values for the exceedance probability (i.e., <0.05 or >0.95) indicate a
significant difference. These simulation results indicate that the proposed model is able to
estimate the true parameters without bias. The percentage of subjects correctly assigned
to their true class was estimated to be 67% in this simulation study.
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Table 4.6: The posterior medians and 95% HPD CIs based on Model 3 and Model 30 for male and fe-
male donors, separately. These results are based on less informative priors for δ and θ, i.e., δ∼N(μ =
3, σ = 3.2)I(0, ) (truncated) and θ∼N(μ = 0.68, σ = 0.18) for males and θ∼N(μ = 0.96, σ = 0.15)
for females.

Male donors Female donors

Parameter Estimate 95% CI Estimate 95% CI

β0 7.85 7.61 8.07 6.97 6.79 7.15
β1 -0.004 -0.006 -0.002 0.003 0.002 0.005
β2 -0.082 -0.100 -0.064 -0.068 -0.084 -0.053
γ 0.19 0.17 0.21 0.17 0.15 0.19
θ 0.72 0.63 0.83 0.65 0.55 0.79
δ 3.52 0.20 9.17 3.09 0.18 8.72
ψ 2.09 1.40 3.05 1.68 1.01 2.88
κ 7 7 8 4 4 5
RTg1 93 57 123 54 10 113
RTg21 113 83 147 278 207 399
RTg22 380 269 530 427 338 594
σb1 0.34 0.31 0.35 0.29 0.28 0.31
σ 0.46 0.45 0.47 0.44 0.43 0.45

4.5 Predicting future Hb values

As mentioned in the introduction, the ultimate aim of this study is to improve the planning
of the donors’ visits to the blood bank. Predicting the Hb level after donation and fore-
casting the appropriate time for inviting again the prospective donor for the next donation
may improve the planning of the donors’ visits to the blood bank. Prediction of a future
observation (Hbinewt−1

) is based upon the chosen model and the estimated parameters via
the current data (Dataref) together with any available observations (Hbinewt−1

, . . . ,Hbinew1
)

for the prospective donor. The prediction consists of two stages. The first stage is to deter-
mine the class membership of the prospective donor. The class membership probability
given all available information for a donor can be computed by applying Bayes’s theorem:

P (gi = k|Dataref,Hbinewt−1
, . . . ,Hbinew1

) =

P (Hbinewt−1
, . . . , Hbinew1

|Dataref, gi = k)P (gi = k)∑2
k=1 P (Hbinewt−1

, . . . ,Hbinew1
|Dataref, gi = k)P (gi = k)

,

where P (gi = k|Dataref, Hbinewt−1
, . . . ,Hbinew1

) is the marginal probability that donor i

belongs to the kth class given the history of Hb values and the other covariates for that
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Table 4.7: The posterior medians and 95% HPD CIs based on Model 3 and Model 30 for male and
female donors, separately. These results are based on a truncated normal distribution with mean zero
and σ equals to 103 for RTg1 , RTg21 , and RTg22 .

Male donors Female donors

Parameter Estimate 95% CI Estimate 95% CI

β0 7.85 7.63 8.08 6.96 6.78 7.14
β1 -0.004 -0.006 -0.002 0.003 0.002 0.005
β2 -0.082 -0.100 -0.064 -0.068 -0.084 -0.053
γ 0.19 0.17 0.21 0.17 0.15 0.19
θ 0.70 0.63 0.76 0.89 0.82 0.96
δ 3.00 2.38 3.62 2.97 2.36 3.62
ψ 2.10 1.31 3.58 3.02 2.23 4.44
κ 7 7 8 4 4 5
RTg1 96 58 143 58 15 122
RTg21 114 83 167 346 275 485
RTg22 395 257 617 508 395 690
σb1 0.34 0.31 0.35 0.29 0.28 0.31
σ 0.46 0.45 0.47 0.44 0.43 0.45

Table 4.8: Results of Model 3 (and Model 30) for 20 artificially generated data sets of male donors

Parameter β0 β1 β2 γ θ δ ψ RTg1 RTg21 RTg22 Class I size

True simulated value 7.87 -0.004 -0.082 0.19 0.70 2.98 2.18 100 117 419 54%

Estimated value 7.99 -0.004 -0.082 0.18 0.67 3.00 1.91 114 122 371 52%

Exceedance probability 0.65 0.51 0.47 0.38 0.25 0.52 0.38 0.46 0.50 0.32

donor (Komárek et al., 2010). P (Hbinewt−1
, . . . ,Hbinew1

|Dataref, gi = k) is the density of
Hb values for this donor given that the donor belongs to class k. At this stage we assign
the donor to the class with the highest probability.
The second stage, which is predicting the random intercept for the donor binew , also can be
performed by applying Bayes’s theorem:

P (binew |Dataref,Hbinewt−1
, . . . ,Hbinew1

, gi) ∝
P (Hbinewt−1

, . . . ,Hbinew1
|Dataref, binew , gi)P (binew). (4.8)

Since the model is linear in the random effects, the posterior distribution for the random
effects has the following closed-form expression (Harville, 1976):

binew |Dataref,Hbinewt−1
, . . . ,Hbinew1

,
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Figure 4.7: Predicted (from Model 3 (and Model 30)) versus observed Hb values for 9 randomly
chosen male donors. To predict the Hb value at each time point the information up to this point was
used.

and,
gi ∼ N(σ2

b1Z
T
i V −1

i (Hbi −Xiβ), σ
2
b1Z

T
i KiZiσ

2
b1),

where Ki = V −1
i − V −1

i Xi

(∑N
i=1 X

T
i V −1

i Xi

)−1

XT
i V −1

i , Vi = σ2
b11Ti + σ2ITi , and Zi is

a vector of 1s of length Ti. Finally, to compute the predicted Hb value, one can apply the
equation for the corresponding model, with bi1 estimated as the mean of the posterior dis-
tribution in (4.8), and with the other parameters obtained from Dataref. This is a dynamic
prediction in the sense that it can be updated as soon as information from subsequent do-
nations becomes available. We predicted the first six Hb values for nine randomly chosen
male donors in Figure 4.7. The predicted Hb values were computed dynamically. That is,
at each time point the information up to this point was used to predict the subsequent Hb
value.

4.6 Conclusion

In this study, we have considered the prediction of a future Hb value for a potential blood
donor given the previous observations, and the estimation of the recovery time after a
donation. The prediction of a donor’s Hb value is complicated due to a) heterogeneity of
the initial Hb value, b) state dependence of a donor’s Hb values, c) varying time intervals
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between donations, d) the temporary reduction in Hb after blood donation, and e) the
fact that the recovery process may change with the number of donations and may differ
between donors. To account for these aspects of the data, we developed a mixed-effects
model (Model 1), a latent class mixed-effects model (Model 2), and a latent class mixed-
effects transition model (Model 3). The advantage of the mixed-effects transition model is
that it simultaneously captures heterogeneity and state dependence. In all these models,
the temporary reduction of Hb after donation was modeled using a flexible function. In
the models with latent classes, the heterogeneity in the recovery process was controlled
using latent classes and the dynamics of the recovery process using a change point model.
The latent class mixed-effects transition model was preferred over the simpler models ac-
cording to the DIC and based on an evaluation of model fit. This finding shows that it is
important to account for both unobserved individual heterogeneity and state dependence
among the Hb values for an individual.
The flexible function (4.2) enables us to estimate the recovery time, which is the time
needed for Hb to return to its pre-donation value. In the model, the estimated pre-
donation Hb value depends on the Hb value at the previous donation via the transition
effect. If the value of the transition effect γ is small, the recovery time can be interpreted
as approximately the time needed to return to the original Hb value, before the person
started donating.
The model results show that the estimated recovery time is considerably longer than the
mandatory interval between donations (i.e., 56 days). Also, our findings point to a con-
cave Hb recovery process. That is, the recovery process is fastest at the beginning and
becomes slower over time. The estimated recovery time should be seen as the ultimate
recovery time, i.e., the time by which a donor’s Hb value has fully recovered. Due to
the concave shape of the recovery process, most of the recovery occurs before half of the
recovery time has passed, which partially explains the long estimated recovery times in
our data set. Furthermore, it should be noted that a recovery time that is longer than the
average interval between donations is in line with the observed data, as there is a decline
in the Hb trajectories with the number of donations.
Another interesting finding is that there is heterogeneity between donors in the recovery
time, i.e., 54.3% and 51.3% of male and female donors have a constant recovery time dur-
ing successive donations. The remaining donors have a longer recovery time and their
recovery time increases after a number of donations. This increase in recovery time might
be attributed to a reduction of the iron reserves in these donors. In a previous study, a rel-
atively faster Hb recovery was observed in donors with high pre-donation iron reserves
(Kiss et al., 2015), so these results require further investigation.
Our models also showed that male donors on average have a shorter recovery process
than female donors. This findings is consistent with previous studies (Custer et al., 2014;
Wadsworth, 1955). The effect of age was estimated negative for male donors and positive
for female donors, which is again consistent with previous studies (Nasserinejad et al.,
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2013; Baart et al., 2011) and can be explained by the effects of menopause: women stop
losing iron after menstruation (Baart et al., 2011). The results also showed that the Hb
value is lower on average in warm seasons than in cold seasons, see also Baart et al. (2011);
Hoekstra et al. (2007) for other evidence of this finding.
The model comparison (using DIC) hints that the latent class mixed-effects model with
random intercepts is not sufficient to capture the entire within-subject correlation struc-
ture. An alternative approach would be to use a more complicated random-effects model,
e.g., using a random slope of the time since the first visit or the number of donations. Al-
though adding additional random effects to the model may improve the fit, the resulting
parameters may be hard to interpret (Funatogawa and Funatogawa, 2012). In our study,
assuming that the time since the first donation or the number of donations affects the Hb
values would imply that a part of the reduction in Hb value is permanent. This assump-
tion would not be realistic from a clinical perspective, therefore we did not include such
random effects in the model. Also, adding random or fixed effects of time since the first
donation or the number of donations to the model would have affected the estimated re-
covery time. Namely, the recovery time could no longer be interpreted as the time needed
for Hb to return to its original value. Finally, yet another alternative model could be a
random effects model using an autoregressive structure in the residuals instead of in the
mean structure, which is not affected by previous covariates.
The transition model is not very often used in medical applications. One of the reasons is
that the associated covariance matrix is more restrictive than for the mixed-effects model
(Funatogawa and Funatogawa, 2012). Furthermore, also transition models with random
effects are not really popular in the medical area. The fact that the ICP condition must be
dealt with implies that standard estimation techniques cannot be applied. To handle the
ICP in the latent class mixed-effect transition model, we used here a reduced form equa-
tion for the initial period similar to the dynamic equation, but excluding the lag effect from
the model. We let the model take into account the correction between the unobserved in-
dividual effects, bi, and the initial state Hbi1.
Although we designed our model to be very flexible, it is only one out of many possible
models. For instance, our model could be improved by incorporating more covariates that
can affect Hb value such as physical activity (Beard and Tobin, 2000), race (Johnson-Spear
and Yip, 1994), nutrition (Brussaard et al., 1997), BMI (Skjelbakken et al., 2006), and smok-
ing status (Kristal-Boneh et al., 1997). However, due to a lack of information, we could
not incorporate them into our model. Class membership could be modeled to depend on
some time-independent covariates such as genetic information of donors. This is the aim
for a subsequent paper, once this information is available.
In conclusion, we developed a statistical modeling approach that allows to classify donors
in two subgroups based on their Hb recovery time. This is of high practical importance
because identification of the class for a donor could improve the planning of donors’ visits
to the blood banks and help to tailor donation intervals and prevent iron deficiency and
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4.6. Conclusion

donor deferrals.
Furthermore, our results support a donation interval longer than 56 days for both sexes,
which has also been recommended in previous literature (Rikhtehgaran et al., 2012; Kiss
et al., 2015; Brittenham, 2011; Simon et al., 1981). The U.S. Food and Drug Administration
(FDA) is currently considering revising this interval to better protect donors (Brittenham,
2011). For the candidates belonging to the group with non-constant recovery time, we
suggest appropriate interventions (e.g., postponing the next invitation or using an iron-
rich diet or taking over-the-counter vitamin supplements that contain iron or specific iron
supplements) to prevent rejection at the next visit.
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4.7 Supplementary

Jags codes to implement a latent class mixed-effects model with 4 classes. The first class
is restricted to be stable regarding the number of donations in the last two years. In this
syntax

model {

for(j in 1:n) { ### Begin j loop

for(i in offset[j]: (offset[j+1]-1)){ ### Begin i loop

Hb[i]˜dnorm(mu[i], tau)

mu[i]<-b[j]+beta[1]+beta[2]*Age[j]+beta[3]*Season[i]-

Indicator[i]*theta*
pow((max(RT[g[j],Time[i]]-(TSPD[i]-delta),0)/

RT[g[j],Time[i]]),psi)

} ### End i loop

### Time[i] is number of donations in this visit

### Indicator[i] is a binary variable (visit till 1st donation=0)

### Latent class indicator

g[j] ˜ dcat(dsi[j,])

dsi[j, 1:2] ˜ ddirch(alpha[])

} ### End j loop

####

for(i in 1:n){

b[i]˜dnorm(0, tau0)

}

for(i in 1:TT){

### 1st class, class with stable recovery time

RT[1,i]<-RT11

### 2nd class

RT[2,i]<-(1-step(i-ChangeTime))*RT21+step(i-ChangeTime)*RT22

}

### Priors

for (n in 1:20) {

prior[n] <- 1/20
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}

for (n1 in 1:2) {

alpha[n1] <- 4

}

ChangeTime˜dcat(prior[])

for (k in 1:3)

{

beta[k] ˜ dnorm(0, 1.E-3)

beta0[k] ˜ dnorm(0, 1.E-3)

}

### Recovery time in 1st class

RT11˜dunif(0,1.E+3)

### Recovery time before change point time in 2nd class

RT21˜dunif(0,1.E+3)

### Recovery time after change point time in 2nd class

RT22˜dunif(0,1.E+3)

tau˜dgamma(1.E-2 , 1.E-2)

tau0˜dgamma(1.E-2 , 1.E-2)

theta˜dnorm(0.67645,493.07)

psi<-exp(lgpsi)

lgpsi˜dnorm(0,10)

delta˜dnorm(3,10)

} ### End
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5 Comparison of criteria for

choosing the number of

classes in Bayesian finite

mixtures

This chapter is submitted as: Nasserinejad K, van Rosmalen J, de Kort W, and Lesaffre E. Com-
parison of criteria for choosing the number of classes in Bayesian finite mixtures. 2016.
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Abstract.

I
DENTIFYING the number of classes in Bayesian finite mixture mod-

els is a challenging problem. Several criteria have been pro-
posed, such as adaptations of the deviance information criterion,
marginal likelihoods, Bayes factors, and reversible jump MCMC

techniques. It was recently shown that in overfitted mixture models, the
overfitted latent classes will asymptotically become empty under spe-
cific conditions for the prior of the class proportions. This result may be
used to construct a criterion for finding the true number of latent classes,
based on the removal of latent classes that have negligible proportions.
Unlike some alternative criteria, this criterion can easily be implemented
in complex statistical models such as latent class mixed-effects models
and multivariate mixture models using standard Bayesian software. We
performed an extensive simulation study to develop practical guidelines
to determine the appropriate number of latent classes based on the pos-
terior distribution of the class proportions, and to compare this criterion
with alternative criteria. The performance of the proposed criterion is
illustrated using a data set of repeatedly measured hemoglobin values
of blood donors.
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5.1 Introduction

Finite mixture models can be used to capture unobserved heterogeneity in the population
by assuming that the population consists of K homogeneous subgroups. These models
also allow to represent non-standard distributions by an appropriate mixture of standard
distributions. However, identifying the number of latent classes (K) remains a challeng-
ing problem (Lee et al., 2008; McGrory and Titterington, 2007; Richardson and Green, 1997;
Rousseau and Mengersen, 2011). Several criteria exist for choosing the number of latent
classes in mixture models in both the frequentist and the Bayesian setting. Whereas in-
formation criteria such as the Akaike information criterion (AIC) (Akaike, 1973) and the
Bayesian information criterion (BIC) (Schwarz et al., 1978) seem to be the most popular
criteria in a frequentist setting (Steele and Raftery, 2010; Pan and Huang, 2014; Keribin,
2000), no clear consensus on the optimal criterion in a Bayesian setting has yet emerged.
Although the deviance information criterion (DIC) (Spiegelhalter et al., 2002) is a well-
established criterion for comparing different Bayesian models, unfortunately this criterion
is not suited to the case of mixture models (Steele and Raftery, 2010). Several adaptations
of this criterion to mixture models have been proposed (Celeux et al., 2006). Alternatively,
models with different numbers of latent classes can be compared by computing marginal
likelihoods, Bayes factors, or by using reversible jump Markov chain Monte Carlo (RJM-
CMC) techniques (Green, 1995).
The appropriate number of latent classes is obtained by optimizing one of the criteria by
fitting several mixture models with different numbers of classes. However, this proce-
dure is often not easy to apply, as estimating a finite mixture model for different numbers
of classes can be time consuming. Furthermore, some of these criteria cannot be calcu-
lated using standard software for Bayesian analyses such as WinBUGS, JAGS, or Stan,
so that the researcher often has to compute the criteria outside these software packages.
RJMCMC sampling is another approach with its own drawbacks. In this algorithm the
Markov chain moves between mixture models with different numbers of classes based on
carefully selected proposal densities (Frühwirth-Schnatter, 2004; Dellaportas and Papa-
georgiou, 2006). It can be difficult to derive appropriate proposal densities, especially for
complex hierarchical models. Alternative choices such as marginal likelihood approaches,
which are generally not available in closed form in mixture models, also yield challenging
numerical issues even for mixture models with a moderate number of classes (Frühwirth-
Schnatter, 2004).
Rousseau and Mengersen (2011) (hereafter R&M) showed that in overfitted mixture mod-
els (i.e., a mixture model fitted with more latent classes than present in the data), the
superfluous latent classes will asymptotically become empty if the Dirichlet prior on the
class proportions is sufficiently uninformative. Rousseau and Mengersen (2011) indicated
that their result may lead to a criterion for finding the true number of latent classes by
simply excluding latent classes that are negligible in proportion. A subsequent study by
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Malsiner-Walli et al. (2016) proposed a specific implementation of this criterion, and used
simulated data to investigate its performance in finding the true number of latent classes.
In their implementation, the mixture model is first estimated with a relatively large num-
ber of latent classes. The true number of latent classes is then estimated as the mode of the
number of non-empty classes, where a class is defined as empty if no subject is assigned
to it in a specific MCMC iteration.
The advantage of R&M criterion is that it is simple to implement using standard Bayesian
software, even for complex statistical models, because the latent class proportions are an
automatic byproduct of the estimation.
In this study, we use a criterion that resembles the criterion used by Malsiner-Walli et al.
(2016). However, we relax the rather conservative criterion used by Malsiner-Walli et al.
(2016) that a class is only empty if it contains zero observations, and instead assess the
effects of different cut-offs for the proportions in a class. This is more logical, because
Rousseau and Mengersen (2011) only showed that the class proportions converge to 0 if
the sample size approaches infinity, not that they should be 0 with any data set of finite
size. The simulation study of Malsiner-Walli et al. (2016) only used data sets with well-
separated latent classes and did not compare the criterion with alternative methods for
choosing the number of latent classes. In our simulation study, we considered various sce-
narios with different degrees of separation between latent classes as well as longitudinal
data, to assess how this criterion performs in a more realistic setting. We also compared
the R&M criterion with alternative criteria for estimating the number of latent classes.
We show that both the prior for the class-specific parameters as well as the hyperparame-
ter of the Dirichlet prior distribution for the class proportions have to be chosen carefully
to ensure a good performance of this method. We use the simulation results to provide rec-
ommended settings, and apply these settings in the analysis of longitudinal hemoglobin
(Hb) values of blood donors.
In the next section, background on finite mixture models is presented including a discus-
sion of priors for mixture models. In Section 5.3, methods for choosing the appropriate
number of classes in this study are presented. Section 5.4 deals with the simulation study
in both a univariate and a longitudinal setting. In Section 5.5, a practical example of lon-
gitudinal mixture modeling is presented. Finally, the results are discussed and practical
recommendations are given in Section 5.6.
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5.2 Background on finite mixture models

Definition of mixture models

A finite mixture model is defined as:

f(y|λ, θ, γ) =
K∑

j=1

λjfj(y|θj , γ), (5.1)

where f(y|λ, θ, γ) is the density of the observed data, fj(y|θj , γ) is the density of the ob-
served data in latent class j, K is the true number of latent classes and the vector λ repre-
sents the class proportions, which are non-negative and sum to 1. θj is a vector of param-
eters for the distribution of the data in class j, and γ is a vector of parameters common
to all classes. The observed data y can be either univariate or multivariate, and fj(y|θ, γ)
may correspond to e.g., a simple Gaussian model or a complex hierarchical model.
Since we use a Bayesian setting, priors need to be chosen for λj , θj (j = 1, . . . ,K), and γ.
A challenging issue that arises in Bayesian mixture models is the nonidentifiability of the
latent classes. The problem is caused by the invariance of the posterior distribution with
respect to permutations of class labeling under symmetric priors and likelihood (Dellapor-
tas and Papageorgiou, 2006). This leads to so-called label switching in the MCMC output,
and the posterior distributions of class-specific parameters θj will be identical and thus
useless for inference (Jasra et al., 2005).

Priors for mixture models

If no relevant prior information for the parameters is available, many researchers prefer
to use noninformative (vague) prior distributions whose impact on the posterior distri-
bution of the model parameters is minimal. The most commonly used prior for the class
proportions, λj , is a symmetric Dirichlet distribution, i.e., λ|K ∼ Dirichlet(α1, . . . , αK),
and αk = α for k = 1, . . . ,K. Smaller values of α correspond with a less informative
prior. A flat prior distribution is obtained with α = 1, whereas setting α = 0 leads to an
improper Dirichlet distribution, and also to an improper posterior result.
The choice of α is important, as its value can strongly affect the posterior results. Al-
though large values of α lead to informative prior distributions, some researchers have
suggested to use values larger than 1 (e.g., α = 4 or α = 10) to avoid solutions with
empty classes (Asparouhov and Muthén, 2011). When using the marginal likelihood as
a criterion (i.e., choosing the number of latent classes that yields the highest value of the
marginal likelihood), it has been shown that more informative Dirichlet distributions lead
to a lower probability of overestimating the number of latent classes in the data (Nobile,
2004; Frühwirth-Schnatter, 2006).
In contrast, Rousseau and Mengersen (2011) have suggested to use smaller values of α,
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with α < d/2, where d is the number of class-specific parameters, i.e., θj . This recommen-
dation is based on a mathematical proof showing that with a sufficiently uninformative
Dirichlet prior distribution, the proportions of overfitted latent classes will converge to
zero as the sample size increases. For α greater than d/2, the class proportions of overfitted
classes will asymptotically converge to nonnegligible values, even if the data are homoge-
neous. This is one of the few examples in Bayesian statistics where less informative priors
lead to better results (Rousseau and Mengersen, 2011), as the more informative Dirichlet
distributions will overestimate the number of latent classes. Rousseau and Mengersen
(2011) further argued that with α < d/2, the posterior distribution of the class proportions
has a much more stable behavior than the maximum likelihood estimator. Another disad-
vantage of using informative Dirichlet priors is that the posterior distributions of the class
proportions may be biased, especially in small data sets.
An alternative approach to fixing α in advance would be to let the data determine the
optimal value for alpha, which means to use a hyperprior specification for α, so that α is
an unknown parameter that is estimated using the data. The prior for α could for example
be a gamma prior, with α ∼ Γ(ε1, ε2) (Ishwaran et al., 2001; Malsiner-Walli et al., 2016),
where ε1 and ε2 are the shape and rate parameters of the gamma distribution, respectively.
Priors must also be chosen for the class-specific parameters θj . In many cases, there is
no relevant prior information available for the class-specific parameters, so that the use
of noninformative priors seems appropriate. However, it is generally not possible to
use improper priors for the class-specific parameters in finite mixture models, because
there is a nonzero posterior probability that at least one of the classes is empty, leading
to improper posteriors for the class-specific parameters (Wasserman, 2000). Instead one
can use minimally informative but diffuse proper priors which lead to diffuse posterior
distributions of the class-specific parameters, but the posterior results may be sensitive to
the spread of the prior (Wasserman, 2000).
Data-dependent priors, which are prior distributions that are a function of the observed
data, have been proposed instead (Richardson and Green, 1997; Wasserman, 2000; Raftery
et al., 1996). Wasserman (2000) showed that these prior distributions may have better
frequentist properties.
Another approach would be to use a hierarchical prior. For example in a mixture model
one can specify a hierarchical prior for the class-specific means as μk|b0 ∼ N(b0, B0),
where b0 ∼ N(m0,M0). The aim of these hierarchical priors is to minimize the impact of
the prior on the posterior.
In many finite mixture models the distribution within each class is assumed to be nor-
mal, conditional on the observed covariates. Different priors have been proposed in
the literature for the class-specific parameters, namely the priors proposed by Nobile
and Fearnside (2007), and the normal-gamma prior (Griffin et al., 2010) for class-specific
means used in Malsiner-Walli et al. (2016) combined with the approach of Rousseau and
Mengersen (2011). Previous literature showed that the choice of prior has a strong effect
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5.3. Methods for choosing the number of classes

on choosing the number of latent classes in mixture models (Jasra et al., 2005).

5.3 Methods for choosing the number of classes

Various approaches have been proposed in the literature for choosing the number of la-
tent classes in mixture models, in both frequentist and Bayesian settings. However, no
consensus has emerged regarding which of these methods performs best. In this study we
compare a number of well-known Bayesian approaches for choosing the number of latent
classes in mixture models. These approaches are described below.

Deviance information criterion (DIC)

The deviance information criterion (DIC) is a well-known Bayesian criterion for the as-
sessment and comparison of different Bayesian models (Spiegelhalter et al., 2002). The
DIC involves a trade-off between goodness of fit (deviance) and model complexity (the
effective number of parameters pD), and can be calculated as follows:

D(θ) = −2 log f(y|θ) + 2 log h(y),

where h(y) is a standardizing term that is a function of the data alone. Then the estimated
effective number of parameters is defined as:

pD = D(θ)− D(θ̂),

where D(θ) is the posterior mean deviance and θ̂ = E[θ|y] is the posterior mean of the
model parameters. DIC is then defined as:

DIC = −4Eθ[log f(y|θ)|y] + 2 log f(y|θ̂), (5.2)

θ̂ = E[θ|y] ensures that pD is positive when the density is log-concave in θ, but it is not
appropriate for discrete parameters θ (Spiegelhalter et al., 2002; Celeux et al., 2006). In
mixture models, the parameters θ are not identifiable if the prior and likelihood are in-
variant with respect to the labeling of classes. Therefore, θ̂ = E[θ|y] can be a very poor
estimator and pD may become negative (Celeux et al., 2006). A more relevant choice for θ̂
would be the mode of the posterior distribution (Celeux et al., 2006). Several adaptations
of this criterion were proposed by Celeux et al. (2006), such as DIC3 and DIC4. Namely,

DIC3 = −4Eθ[log f(y|θ)|y] + 2 log f̂(y), (5.3)

where f̂(y) =
∏n

i=1 f̂(yi), f̂(yi) =
1
M

∑M
m=1

∑K
j=1 λ

m
j fj(y|θmj ), M denotes the number of

MCMC iterations, λm
j and θmj are the results of the mth MCMC iteration, and

DIC4 = −4Eθ,Z [log f(y, Z|θ)|y] + 2EZ [log f(y, Z|Eθ[θ|y, Z]|y], (5.4)
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where Z = (z1, . . . , zn) is the class assignment vector of observations (individuals). To
compute DIC4, it is necessary to calculate the posterior expectation for each possible value
of z. Among various DICs studied Celeux et al. (2006), these two DICs were found to be
the most reliable criteria by the authors (Celeux et al., 2006).

Reversible jump MCMC algorithm

Another fully Bayesian approach is the reversible jump MCMC algorithm (RJMCMC),
as introduced by Green (1995), which is an extension of the standard MCMC. RJMCMC
allows sampling of the posterior distribution on spaces of varying dimensions. In this
algorithm the Markov chain moves between finite mixture models with different number
of classes based on carefully selected degenerated proposal densities, but which are in
general not easy to design (Brooks et al., 2003; Dellaportas and Papageorgiou, 2006).

Rousseau and Mengersen’s criterion

Rousseau and Mengersen (2011) proved that the posterior behavior of an overfitted mix-
ture model depends on the chosen prior on the proportions λj . They showed that an
overfitted mixture model converges to the true mixture, if the Dirichlet-parameters αj of
the prior are smaller than d/2 (d is the dimension of the class-specific parameters). This
result can be used to define a criterion for choosing the true number of latent classes in a
mixture model. Basically, a deliberately overfitted mixture model with Kmax (Kmax > K)
latent classes is fitted to the data. A sparse prior (Dirichlet distribution with αj < d/2)
on the proportions is then assumed to empty the superfluous classes (Kmax − K) during
MCMC sampling.
Various criteria can be used for a class to be declared empty. For instance, one could de-
clare a class empty if the number of observations assigned to that class is smaller than
a certain proportion of the observations in the data set (e.g., ψ). In other words, the (as-
sumed) true number of non-empty classes (K) could be computed in each MCMC iteration
as:

K(m) = Kmax −
Kmax∑
j=1

I{N
(m)
j

N
≤ ψ}, (5.5)

where K(m) is the number of non-empty classes in iteration m of MCMC sampling, N (m)
j

is the number of observations allocated to class j at iteration m, N is the total number of
observations and I denotes the indicator function. ψ can be set to a predefined value, e.g.,
0, 0.01, 0.02, or 0.05. Then one can derive the number of non-empty classes based on the
posterior mode of the number of non-empty classes based on all MCMC iterations.
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Bayesian information criterion

The Bayesian information criterion (BIC) (Schwarz et al., 1978) is a well-known frequentist
criterion, which has been shown to be consistent for choosing the number of latent classes
in mixture models (Keribin, 2000). BIC is defined as follows:

BIC = −2[log f(y|θ̂)] + g log(n), (5.6)

where θ̂ is the maximum-likelihood estimate of the parameter θ, g is the number of free
parameters in the model, and n is the number of observations in the data.

5.4 Simulation studies

To investigate the performance of the criterion proposed by R&M compared to other
well-known approaches, we set up two simulation studies with different scenarios. The
first simulation study is based on one-dimensional data, whereas the second simulation
study uses longitudinal data.

Simulation study A: univariate Gaussian mixture

In this simulation study, we consider a univariate Gaussian mixture, i.e., a location-scale
mixture of univariate normal distributions:

f(yi|λ, μ, σ2) =

K∑
j=1

λjN(yi|μj , σ
2
j ), (5.7)

where f(yi|λ, μ, σ2) is the density of the observed data yi (i = 1, . . . , n), n is the number
of independent observations, N(yi|μj , σ

2
j ) is the density of the normal distribution with

mean μj and variance σ2
j , K is the true number of latent classes and λj is the proportion

of latent class j.
We simulate data from this model using n = 500 observations with different numbers of
latent classes, and different degrees of separation (i.e., low, moderate, and high separation).
Our definition of low, moderate, and high separation is somewhat subjective, and is based
on the percentage of variation in the data that can be explained by the clustering structure,
i.e., σ2

E(Y |Z)/σ
2
Y where σ2

Y denotes the marginal variance of the data, Z is an indicator
variable for the latent class, and σ2

E(Y |Z) is the between-class variance. We also assessed
the degree of separation between latent classes using the overlapping coefficient (OVL),
which is the overlapping area that is below the density functions (Inman and Bradley Jr,
1989). The following four scenarios were considered:
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Figure 5.1: Univariate simulated data study: Histograms of randomly selected generated data sets.
The solid lines represent the true marginal densities.

� Scenario A1: No clustering structure: K = 1 class with μ1 = 1 and σ1 = 0.25, see
Figure 5.1(a).

� Scenario A2: High separation (σ2
E(Y |Z)/σ

2
Y = 0.80, OVL = 0.06): K = 3 classes

with μ1 = 1, μ2 = 2, μ3 = 3, and σ1 = σ2 = σ3 = 0.25, see Figure 5.1(b).

� Scenario A3: Moderate separation (σ2
E(Y |Z)/σ

2
Y = 0.70, OVL = 0.29): K = 3

classes with μ1 = 1, μ2 = 2, μ3 = 3, and σ1 = σ2 = σ3 = 0.4, see Figure 5.1(c).

� Scenario A4: Low separation (σ2
E(Y |Z)/σ

2
Y = 0.60, OVL = 0.74): K = 3 classes

with μ1 = 1, μ2 = 2, μ3 = 3, and σ1 = σ2 = σ3 = 0.7, see Figure 5.1(d).

In the base-case analysis, the data are simulated using equal class proportions (i.e.,
λj = 1/K for each class j). The histograms of these simulated data for a randomly se-
lected data set are displayed in Figure 5.1, together with the true marginal densities. Sepa-
ration decreases from Figure 5.1(b) to Figure 5.1(d), to end in a unimodal distribution. We
implemented the criterion proposed by R&M, and we compared this criterion with the
results of RJMCMC (Celeux et al., 2006), DIC3 and DIC4 Celeux et al. (2006), and BIC. To
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5.4. Simulation studies

establish whether a class is empty under the R&M criterion we used different values for
the cut-off (ψ) i.e., 0, 0.01, 0.02, and 0.05 of observations in the sample, and the maximum
number of latent classes was set to Kmax = 10.
The prior for the class proportions λ was chosen to be a symmetric Dirichlet distribution
with hyper-parameter equal to α = 0.00001, 0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 0.9.
For the priors of the class-specific means, we considered both a normal-gamma prior and
a relatively uninformative prior. The relatively uninformative prior was μj ∼ N(0, 31.62).
The normal-gamma prior is a hierarchical data-dependent prior that places a normal prior
on the prior mean and a shrinkage prior on the prior variance (Malsiner-Walli et al., 2016).
This prior for a univariate mixture model can be defined as follows:

μk|λ , b0 ∼ N(b0, η R
2),

where η ∼ Γ(ν1, ν2) and b0 ∼ N(m0,M0), m0 and R are the median and range of the
data, respectively. M−1

0 is set to 0. The hyper-parameters ν1 and ν2 are set to 0.5 to allow
considerable shrinkage of the prior variance of class means (Malsiner-Walli et al., 2016).
For the priors of the class-specific variance, we also considered a hierarchical data-
dependent prior and a relatively uninformative prior. The hierarchical data-dependent
prior on the class-specific variances was implemented by Malsiner-Walli et al. (2016) in a
multivariate mixture model, and is given by:

1/σ2
k ∼ Γ(β1 = 1.25, β2 = 1/(2C0)),

where C0 ∼ Γ(ε1 = 0.25, ε2 = 20/R2). The relatively uninformative prior on the class-
specific variances was σ2

j ∼ U(0, 10).
We used a full factorial design to vary a) the number of latent classes and the degree of
separation (using the four scenarios described above), b) the criterion for determining the
number of latent classes (i.e., the R&M criterion with different cut-off values, RJMCMC,
DIC3, DIC4, and BIC), and c) the value of α in the Dirichlet distribution (i.e., α =0.00001,
0.001, 0.01, 0.05, 0.1, 0.3, 0.5, or 0.9).
Three additional factors were varied in sensitivity analyses. In these sensitivity analyses,
only the scenario with high separation between classes was simulated, but the other fac-
tors in the full factorial design were not fixed.
Two sensitivity analyses consisted of a) changing the sample size of the data set (i.e., 100
- 600 observations) and b) simulating data with unequal proportions of the latent classes,
including one small class, using λ1 = 0.475, λ2 = 0.475, λ3 = 0.05. Finally, we also per-
formed a sensitivity analysis for the number of latent classes, with K ranging from K = 1

to K = 6, with n = 100 ×K and means chosen as μj = j for j = 1, . . . ,K and σj = 0.25

and also σj = 0.40.
We generated 50 data sets for each setting in the base-case analysis and the sensitivity
analyses, except for the sensitivity analyses with varying number of classes, which used
only 20 data sets. The low number of simulated data sets for these sensitivity analyses
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was necessary to limit the total computation time. MCMC sampling is run for each data
set for 50,000 iterations after discarding the first 5,000 iterations (burn-in). Computations
were performed using the JAGS interface in R, Rmixmod, lcmm, and mixAK packages in
R. To be able to compute DIC3 and DIC4, an MCMC sampler for the model parameters
and the class assignments in the univariate mixture model was programmed in R.

Simulation study A: results

Table 5.1 shows the simulation results of Scenario A1. This table presents the success
rate (the percentage of data sets in which the true number of clusters was obtained) of
the different approaches, the mode of the estimated number of classes is presented in
parentheses. The criterion of Rousseau and Mengersen (2011) is denoted as R&MNG if
the normal-gamma prior is used, and as R&MNI if the relatively uninformative prior is
used, with the cut-off value for defining a class to be empty as a subscript. For example,
R&MNI

0.02 represents the Rousseau and Mengersen (2011) criterion with the relatively un-
informative prior where ψ = 0.02.
In this scenario, the models cannot underestimate the number of classes. Small values for
α for both a normal-gamma prior and a relatively uninformative prior in the R&M crite-
rion result in a better estimation of the true number of latent classes. However, the R&M
criterion with a normal-gamma prior requires much lower values of α (i.e., α < 0.1) to
obtain adequate results compared to the R&M criterion with the relatively uninformative
prior, in which any value of α below 0.5 leads to good results. The other approaches (i.e.,
RJMCMC, DIC3, and DIC4) show better results with larger values for α.

Table 5.1: The results of Scenario A1. Percentage of data sets in which the true number of clusters was
found, with the mode of the estimated number of classes in parentheses.

α RJMCMC R&MNG
0 R&MNG

0.01 R&MNG
0.02 R&MNG

0.05 R&MNI
0 R&MNI

0.01 R&MNI
0.02 R&MNI

0.05 DIC3 DIC4

0.00001 68%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 0%(5) 0%(5)
0.001 18%(10) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 100%(1) 0%(3) 0%(3)
0.01 28%(1) 98%(1) 98%(1) 98%(1) 98%(1) 100%(1) 100%(1) 100%(1) 100%(1) 98%(1) 20%(5)
0.05 90%(1) 22%(2) 80%(1) 84%(1) 92%(1) 100%(1) 100%(1) 100%(1) 100%(1) 96%(1) 72%(1)
0.1 98%(1) 2%(4) 10%(3) 18%(2) 40%(2) 100%(1) 100%(1) 100%(1) 100%(1) 96%(1) 100%(1)
0.3 98%(1) 0%(8) 0%(6) 0%(5) 0%(3) 98%(1) 100%(1) 100%(1) 100%(1) 94%(1) 100%(1)
0.5 98%(1) 0%(9) 0%(7) 0%(6) 0%(5) 96%(1) 98%(1) 98%(1) 100%(1) 94%(1) 100%(1)
0.9 98%(1) 0%(10) 0%(9) 0%(8) 0%(6) 96%(1) 98%(1) 98%(1) 100%(1) 90%(1) 100%(1)
The success rate of BIC using a frequentist approach was 100%.

Table 5.2 shows the simulation results of Scenario A2 (high separation), Scenario A3
(moderate separation), and Scenario A4 (low separation). In Scenario A2, small values for
α (i.e., α < 0.05) in the R&M criterion result in a perfect estimation of the true number
of latent classes. The number of classes is overestimated by the R&M criterion with the
normal-gamma prior for higher values of α. No such overestimation is observed for the
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noninformative prior. Similar results were obtained in the sensitivity analysis for the num-
ber of latent classes (see Tables S1 and S2). In that sensitivity analysis, the normal-gamma
prior yielded good results with values of α < 0.1, but the noninformative only gave good
results for larger values of α, with α > 0.05. RJMCMC and DIC3 gave the best results
with larger values for α (α > 0.1). The performance of DIC4 does not seem to depend on
the value of α, but it is not very good, with the probability of finding the true number of
latent classes ranging from 50 to 70%.
When looking at Scenario A3 (moderate separation) and Scenario A4 (low separation), a
different picture emerges. These results show that the R&M criterion may underestimate
the true number of latent classes for low values of α. Namely, the R&M criterion with
the normal-gamma prior underestimates the number of classes with low values of α and
overestimates this number with high values of α. There is a narrow range around values
of α = 0.05 in which the performance of this criterion is good, and this range seems to de-
pend on the cut-off for defining a class to be empty. On the other hand, the R&M criterion
with the noninformative prior almost always underestimates the number of latent classes
in Scenario A3 and Scenario A4. Underestimation rarely occurs with higher values of α,
but a large value for α may result in overestimating the true number of latent classes. In
Scenario A4, in which the distribution of the data looks unimodal, all approaches except
R&MNI

0.02 and R&MNI
0.05 (for α=0.9) perform poorly, and most methods detect only a single

class.
As a sensitivity analysis, we simulated a heterogeneous population with three unequal

proportions, i.e., λ1 = 0.475, λ2 = 0.475, λ3 = 0.05, μ1 = 1, μ2 = 2, μ3 = 3 and
σ1 = σ2 = σ3 = 0.25 (high separation), see Table 5.3 for the results. Here we performed
the R&M criterion only with the noninformative prior. These results are consistent with
the results of Scenario A2. The performance of the R&M criterion is quite good except
for R&MNI

0.05 since the smallest class proportion is 5%, the cut-off defined for a class to be
empty.
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Table 5.3: Unequal proportions heterogeneous scenario; a heterogeneous population with three clus-
ters. λ1 = 0.475, λ2 = 0.475, λ3 = 0.05, μ1 = 1, μ2 = 2, μ3 = 3 and σ1 = σ2 = σ3 = 0.25 (high
separation). Percentage of data sets in which the true number of clusters was found, with the mode
of the estimated number of classes in parentheses.

α RJMCMC R&MNI
0 R&MNI

0.01 R&MNI
0.02 R&MNI

0.05 DIC3 DIC4

0.00001 48%(3) 100%(3) 100%(3) 100%(3) 48%(2) 0%(5) 14%(4)
0.001 6%(7) 98%(3) 98%(3) 98%(3) 48%(2) 2%(5) 14%(4)
0.01 36%(4) 98%(3) 98%(3) 98%(3) 50%(3) 48%(3) 24%(4)
0.05 70%(3) 100%(3) 100%(3) 100%(3) 50%(3) 86%(3) 16%(4)
0.1 98%(3) 100%(3) 100%(3) 100%(3) 50%(3) 98%(3) 20%(4)
0.3 100%(3) 100%(3) 100%(3) 100%(3) 54%(3) 100%(3) 28%(4)
0.5 100%(3) 100%(3) 100%(3) 100%(3) 56%(3) 100%(3) 44%(3)
0.9 100%(3) 20%(4) 88%(3) 96%(3) 80%(3) 100%(3) 92%(3)

The success rate of BIC using a frequentist approach was 98%(3).

Simulation study B: a longitudinal study with a mixture of Gaussian

random effects distributions

Simulation study A enabled us to compare different criteria in a simple setting. However,
mixtures also appear in more complicated models, where it may be difficult to calculate
some of the criteria that were evaluated in Simulation study A. However, the calculation
of the R&M criterion should still be feasible in that case. To verify the performance of the
R&M criterion we tested its performance based on a simulation study for a mixture model
with longitudinal data.
In this simulation study we generate data from a growth mixture model, which is also
known as a latent class mixed effects model (Muthén and Shedden, 1999; Wang and Bod-
ner, 2007) with a mixture model on the random effects (Wang and Bodner, 2007). The
density function in a Gaussian growth mixture model can be expressed as 5.1, where fj(y)

is the density function that describes the trajectory for class j. The vector θj represents the
parameters that are associated with the trajectory of class j.
The growth mixture model for individuals that belong to latent class j can be expressed
as:

yit|j = θj0 + bij0 + (θj1 + bij1) timeit + εit,

where yit|j is the tth observation of the ith individual, given that this individual is in latent
class j. θj0 and θj1 are the fixed intercept and slope of the jth latent class, respectively. bij0
and bij1 are the random intercept and slope of the jth latent class that are assumed to be
bivariate normally distributed with mean zero and a class-specific variance-covariance
structure. The residuals εit are now assumed to be normally distributed, and independent
of the random effects.
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In this simulation study we computed the R&M criterion and the BIC. To establish whether
a class is empty with the R&M criterion we used different values for the cut-off (ψ) as in
Section 5.4 (i.e., 0, 0.01, 0.02, and 0.05 of observations in the sample), and the maximum
number of latent classes was also set to Kmax = 10. Here we considered a homogeneous
population (K = 1) and a heterogeneous population (K = 3).

� Scenario B1: (homogeneous data with a random intercept and slope): K = 1 class

with θ10 = 2 and θ11 = −0.2, bi1 ∼ N2(0,Σ), Σ =

[
0.252 0

0 0.0252

]
and the

residuals εit are normally distributed with variance of 0.252, εit ∼ N(0, 0.252), and
independent of the random effects, see Figure 5.2(a).

� Scenario B2: (heterogeneous data with a random intercept): K = 3 classes with
θ10 = 1, θ20 = 2, θ30 = 3 and θ11 = θ21 = θ31 = −0.2, bij0 ∼ N(0, 0.252),
bij1 = 0 (a random intercept model) for j = 1, 2, 3 and the residuals εit are normally
distributed with variance of 0.252, i.e., εit ∼ N(0, 0.252), and independent of the
random effects, see Figure 5.2(b).

� Scenario B3: (heterogeneous data with a random intercept and slope): K = 3

classes with θ10 = 1, θ20 = 2, θ30 = 3 and θ11 = −0.1, θ21 = −0.2, and θ31 = −0.3,

bij0 ∼ N(0, 0.252), bij ∼ N2(0,Σ), Σ =

[
0.252 0

0 0.0252

]
for j = 1, 2, 3 and the

residuals εit are normally distributed with variance of 0.252, εit ∼ N(0, 0.252), and
independent of the random effects, see Figure 5.2(c).

Relatively noninformative priors were specified for the class-specific parameters θj0 and
θj1, i.e., N(0, 103). An Γ−1(10−3, 10−3) was specified for the variance of the residuals (this
prior also used for the variance of random intercept in Scenario B2). An Inv-Wishart(R, df)
distribution was specified for the variance-covariance structure of the random intercept
and random slope. We set the degrees of freedom, df, to 3 and the scale parameter matrix,
R, to a diagonal matrix with small values, i.e., 10−3 Lesaffre and Lawson (2012). For
the class membership probability a Dirichlet distribution with different values (i.e., α =

0.00001, 0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, and 2.5, where Kmax = 10) for the class
proportions was specified. Larger values here were specified since in Scenario B1 and
Scenario B3 d = 5.
In this analysis, the data are simulated using equal class proportions (i.e., λj = 1/K

for each class j). Figure 5.2 shows a randomly selected generated data set for the three
scenarios.
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Figure 5.2: Longitudinal simulated data study: The left profile belongs to a homogeneous population
with one class. The middle one belongs to a population with three classes where classes differ only in
intercept, and the right profile belongs to a heterogeneous population with three classes where classes
differ both in intercept and slope.

We generated 50 data sets for each setting consisting of 200 subjects and 6 observations
per subject. MCMC sampling is run for each data set for 50,000 iterations after discarding
the first 5,000 iterations (burn-in).

Simulation study B: results

The simulation results of Scenario B1 (homogeneous data with a random intercept and
slope) show that the R&M criterion with the noninformative prior estimates the true num-
ber of classes perfectly. The results of this simulation are presented in Table S3 in Supple-
mentary Material Section 5.7.
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5. CRITERIA FOR CHOOSING NUMBER OF CLASSES IN MIXTURE MODELS

Table 5.4: The results of Scenario B2. Percentage of data sets in which the true number of clusters was
found, with the mode of the estimated number of classes in parentheses.

α R&MNI
0 R&MNI

0.01 R&MNI
0.02 R&MNI

0.05

0.00001 4%(1) 4%(1) 4%(1) 4%(1)
0.001 4%(2) 4%(2) 4%(2) 4%(2)
0.01 18%(2) 18%(2) 18%(2) 18%(2)
0.05 48%(2) 48%(2) 48%(2) 48%(2)
0.1 74%(3) 74%(3) 74%(3) 74%(3)
0.3 90%(3) 90%(3) 90%(3) 90%(3)
0.5 96%(3) 98%(3) 98%(3) 100%(3)
0.9 8%(4) 14%(4) 20%(4) 34%(4)

The success rate of BIC using a frequentist approach was 98(3)%.

Table 5.5: The results of Scenario B3. Percentage of data sets in which the true number of clusters was
found, with the mode of the estimated number of classes in parentheses.

α R&MNI
0 R&MNI

0.01 R&MNI
0.02 R&MNI

0.05

0.00001 4%(2) 4%(2) 4%(2) 4%(2)
0.001 4%(2) 4%(2) 4%(2) 4%(2)
0.01 6%(2) 6%(2) 6%(2) 6%(2)
0.05 6%(2) 6%(2) 6%(2) 6%(2)
0.1 6%(2) 6%(2) 6%(2) 6%(2)
0.3 10%(2) 10%(2) 10%(2) 10%(2)
0.5 10%(2) 10%(2) 10%(2) 10%(2)
1.0 22%(2) 22%(2) 22%(2) 20%(2)
1.5 36%(2) 36%(2) 36%(2) 32%(2)
2.0 58%(3) 58%(3) 58%(3) 52%(3)
2.5 36%(3) 36%(3) 36%(3) 34%(4)

The success rate of BIC using a frequentist approach was 46%(3).

Table 5.4 shows the simulation results of scenario B2 (heterogeneous data with a ran-
dom intercept). In this scenario d = 2, therefore α should be smaller than 1 to make sure
that overfitted classes become empty asymptotically (Rousseau and Mengersen, 2011).
In this scenario, large values for α (i.e., 0.1 < α < 0.9) in the R&MNI criterion result in
an accurate estimation of the true number of latent classes. An underestimation of the
number of classes is observed for R&MNI criterion when a lower value of α is used. In this
scenario, different cut-offs lead to the same results.

102



Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016

504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem

5.4. Simulation studies

Table 5.5 shows the simulation results of Scenario B3 (heterogeneous data with a random
intercept and slope). In this scenario d = 5, therefore α should be smaller than 2.5. In this
scenario, setting α = 2.0 in the R&MNI criterion yields the most precise estimation of the
true number of latent classes. Using this value for α, the result of the R&M criterion was
better than BIC. An underestimation of the number of classes is observed for the R&MNI

criterion when a lower value of α is used. Larger values for α lead to an overestimation of
the true number of latent classes.

Simulation study A and B: conclusions

Simulation study A shows how the prior for the class-specific parameters and the Dirichlet
prior for the class proportion interact to affect the selection of the correct number of latent
class models. Using a hierarchical prior (i.e., a normal-gamma prior) for the class-specific
means and variances, values for the Dirichlet hyperparameter α in the range 0.05-0.10
lead to acceptable results with both moderate or high separation between classes. Higher
values for α may lead to an overestimation of the number of latent classes, even if α

remains well below the threshold value d/2 that was given in the proof of Rousseau and
Mengersen (2011). For α < 0.05 a good performance is observed in the high separation
scenario, but the number of classes is underestimated in scenarios with a moderate or low
amount of separation. This underestimation of the number of latent classes with a low
Dirichlet hyperparameter was not observed in a previous simulation study, however that
study simulated only data sets with well separated latent classes (Malsiner-Walli et al.,
2016).
With an uninformative prior for the class-specific means and variances, a perfect perfor-
mance of the R&M criterion is observed in well separated data sets, irrespective of the
value of α. An underestimation of the number of classes is observed in the scenarios with
a low or moderate separation, especially with low values for α. Setting α to a higher value,
while still ensuring that α < d/2, led to a considerable improvement in the selection of the
number of latent classes in these scenarios. In additional simulations (results not shown),
we confirmed that setting α to a value above the threshold (i.e., to α > d/2) results in an
overestimation of the number of latent classes, as was predicted by the proof in Rousseau
and Mengersen (2011).

Using the normal-gamma prior, the performance of the R&M criterion seems quite
sensitive to the value of α. In addition, the optimal value of α (i.e., that leads to highest
probability of choosing the correct number of classes) depends on the separation between
classes and the true number of classes, which are typically not known in practice. In
contrast the performance of the R&M criterion with an uninformative prior seems much
more stable, as long as the value of α is close to but below the threshold of d/2.
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5. CRITERIA FOR CHOOSING NUMBER OF CLASSES IN MIXTURE MODELS

Of the 4 possible values for the threshold to determine whether a class is empty (i.e., ψ in
5.5), we found the best performance using a value of 0.01 in the scenario with a moderate
separation (see Table S4). In the other scenarios there was no clear difference between the
possible values of ψ. Therefore setting ψ = between 0.02 and 0.05 seems reasonable, and
a value in this range should allow for the detection of relatively small classes containing a
few percent of the population.
Compared to alternative criteria for selecting the number of latent classes, the performance
of the R&M criterion was good.
The performance of BIC was generally inferior to that of the R&M criterion, especially in
data sets with many latent classes and data sets with moderate or low separation. The
performance of DIC3, DIC4 and RJMCMC depends on the value of α. Although in some
scenarios specific values of α seem to lead to a good performance for these criteria, there
is no value of α that leads a good performance across all scenarios.
Simulation study B confirms the conclusions of simulation study A. It shows that the R&M
criterion can also be implemented in a more complex and realistic setting such as a growth
mixture model for longitudinal data. The R&M criterion using uninformative priors for
the class-specific parameters and α smaller than but close to d/2 (e.g., between 0.8 and 0.9
d/2) yielded the best results, and outperformed BIC. However, the results were generally
less good in the Scenario B3, which has a more complex structure with random intercept
and slope.

5.5 Hemoglobin longitudinal data

In this section, we apply the R&M criterion to a finite mixture model for hemoglobin (Hb)
values of blood donors. Our motivating application is the trajectory of Hb values of blood
donors over successive donations. Blood donors experience a temporary reduction in their
Hb value after donation. Therefore, a minimum 8 week interval between two donations is
set by the blood bank, to allow the donor’s Hb value to recover to its pre-donation level.
However, this interval seems to be too short since on average there is a declining trajectory
in the Hb values for blood donors who donate regularly (Brittenham, 2011; Cable et al.,
2011). Therefore, a considerable proportion of prospective blood donors are temporarily
deferred from donation each year due to low Hb values (Newman, 2004). A Hb value of
8.4 mmol/l (135 g/l) and 7.8 mmol/l (125 g/l) for men and women, respectively, is widely
accepted as the lower cut-off value of eligibility for donation to protect donors from ane-
mia (Radtke et al., 2005). The previous studies showed that some individuals have a fast
recovery, which results in a relatively stable trajectory, whereas others have a slow recov-
ery that yields a declining trajectory in their Hb values (Nasserinejad et al., 2015, 2016).
Here, we use a data set of longitudinally observed Hb values from 1 January 2005 to 31 De-
cember 2012 collected by Sanquin Blood Supply in the Netherlands. This data set is based
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5.5. Hemoglobin longitudinal data

on a self-administered questionnaire study aimed at gaining insight into characteristics
and motivation of the Dutch donor population (Atsma et al., 2011). Here we randomly
selected 200 new registered male blood donors who have at least 5 visits to blood bank.
These data are part of the Donor InSight study, for more details see Atsma et al. (2011).
A mixed-effects model with random intercept and slope may be able to capture the hetero-
geneity between individuals in these data. However previous studies suggested that de-
scribing the total donor population using a single trajectory may oversimplify the complex
growth patterns of this population (Nasserinejad et al., 2015, 2016). Therefore, a growth
mixture modeling approach, which accounts for different subgroups of donors, seems to
be a more appropriate method for capturing differences in Hb trajectories between donors
(Nasserinejad et al., 2015, 2016). Here we implemented the R&M criterion with relatively
uninformative priors for the parameters. Different cut-offs (i.e., 0, 0.01, 0.02, and 0.05)
were used to define a class to be empty.
Several factors are known to be associated with Hb and hence may be used as predictors,
i.e., sex (Yip et al., 1984), season (Hoekstra et al., 2007), age (Yip et al., 1984). Here we
model Hb trajectory based on number of donations in last two years (NODY2), the season
donation took place (a binary value for cold=1 and warm seasons=0), time since previous
donation (TSPD), and age of donor (years) at first visit. The class-specific parameters are
the intercept and the effect of NODY2. The aim of the model is to assign each donor to one
of j groups in such a way that donors with similar Hb trajectories are in the same group,
and that the groups are most different from each other in terms of the Hb trajectory.
The growth mixture model for the trajectory of Hb levels of blood donors who belong to
latent class j can be expressed as:

Hbit|j = θj0 + bij0 + γ1Age
i
+ γ2Seasonit + γ3TSPDit + (θj1 + bij1)NODY2it + εit,

where Hbit|j is the predicted Hb level at the tth observation of the ith individual, given
that this individual is in latent class j. θj0 and θj1 are the fixed intercept and slope (co-
efficients of NODY2) of latent class j. bij0 and bij1 are the random intercept and slope of
latent class j that are assumed to be bivariate normally distributed with mean zero and a
class-specific variance-covariance structure. The residuals εit are assumed to be normally
distributed, and independent of the random effects.

Prior specification

The priors for the model parameters were chosen as follows. Relatively noninformative
priors were specified for both the class-specific parameters θ’s and the non-class-specific
parameters γ’s, i.e., N(0, 103). An Γ−1(10−3, 10−3) was specified for the variance of the
residuals. An Inv-Wishart(R, df) distribution was specified for the variance-covariance
structure of the random intercept and random slope. We set the degrees of freedom, df,
to 3 and the scale parameter matrix, R, to a diagonal matrix with small values, i.e., 10−3
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Figure 5.3: Hb profiles for four different classes.

Lesaffre and Lawson (2012). Since the number of class-specific parameters d is 5, for the
class membership probability a Dirichlet distribution with different values for alpha (i.e.,
1.0, 1.5, 2.0, and 2.5) was specified for the mixing proportions.
To analyze these data, we chose the results with α = 2, in view of the results of Scenario
B3. Therefore, donors can be assigned to four different classes. Based on the highest
posterior probability, individuals were assigned to the latent classes. The profiles of these
different classes are displayed in Figure 5.3. This figure shows how trajectories of Hb
values for blood donors are different. A group of donors have a low initial Hb value but
relatively stable trajectory (Class I), donors in Class II have a very high initial Hb value and
a very sharply declining trajectory. Donors in Class III have a high initial Hb value and
a moderately declining trajectory, donors in Class IV have moderate initial Hb value and
relatively stable trajectory. The results of this study regarding the number of latent classes
and the interpretation of each class are supported by a previous study (Nasserinejad et al.,
2015).
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Figure 5.4: Posterior distribution of non-empty classes (K) for different cut-offs (ψ).

Table 5.6: Number of latent classes in Hb data for different α and different cut-offs (ψ).

α R&MNI
0 R&MNI

0.01 R&MNI
0.02 R&MNI

0.05

0.5 1 1 1 1
1.0 1 1 1 1
1.5 2 2 2 2
2.0 4 4 4 3
2.5 4 4 4 3

BIC using a frequentist approach found 2 classes.

Figure 5.4 shows the posterior distribution of the number of non-empty classes (K) for
different cut-offs (ψ) using 50,000 MCMC iterations when α = 2. This figure show how
the posterior mode of the number of nonempty classes may be affected by changing the
ψ.
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5.6 Discussion

The results of the simulation studies showed that the R&M criterion has a high probability
of estimating the correct number of latent classes, provided that the priors on the propor-
tions and the class-specific parameters are chosen carefully. Despite the simplicity of this
criterion, it performs at least as good as alternative selection criteria for the number of
latent classes. The application of the R&M criterion to longitudinal data of blood donors
further illustrated the practical usefulness of this method.
An important advantage of the R&M criterion is that this approach is straightforward to
implement, using MCMC sampling for a mixture model with a large number of latent
classes. The number of nonempty latent classes (i.e., classes with a proportion larger than
the predefined cutoff value) is then an automatic byproduct of the MCMC sampler. There-
fore, this criterion is easily implemented in standard Bayesian software such as WinBugs
and JAGS, even for complex statistical models such as latent class mixed-effects models
and multivariate mixture models. A further advantage of the R&M criterion is that it is
not affected by label switching. Despite the fact that the R&M criterion is relatively easy to
implement, this criterion seems to perform better than alternative criteria at estimating the
true number of classes. Although only a limited set of statistical models was considered
in the simulations, these results suggest that the R&M criterion works well and may be
considered for practical use in Bayesian finite mixture models.
A strength of this study is that it is one of the first studies to compare different criteria
for selecting the number of latent classes in a Bayesian setting. Although the R&M crite-
rion has been implemented in simulated data previously (Malsiner-Walli et al., 2016), our
study adds important insight into how this criterion should be implemented, based on a
more elaborate simulation study with several scenarios.
In a previous simulation study, it was shown that using a sufficiently low value of α (e.g.,
α < 0.001) prevents overfitting of the number of latent classes, and that using higher val-
ues of α, with α < d/2 can lead to overfitting (Malsiner-Walli et al., 2016). In that study,
no underestimation of the number of latent classes was observed. In our simulation study
we observed that with a slightly lower amount of separation between classes than in the
previous study, underestimation of the number of classes often occurs, especially with
low values of α. This shows that the value of α should be chosen to provide a trade-off
between the probability of overfitting and the probability of underfitting the number of
latent classes. Furthermore we observed that if an uninformative prior is used for the
class-specific parameters, overfitting of the number of latent classes does not seem to oc-
cur, provided that α < d/2.
Rousseau and Mengersen (2011) proved that the class proportions converge to 0, not that
they should be 0 with any data set of finite size. We therefore used different cut-offs for the
proportions in a class to define a class to be empty. Using a cut-off of 0 may be sensitive
to outliers in the data and did not perform well in the simulation studies. A cut-off of
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5.6. Discussion

between 0.02 and 0.05 should be sufficient to make the criterion robust to outliers, while
being small enough to avoid the exclusion of real segments in the population. The interest
of finding classes with small proportion may depend on the application and the research
questions. Therefore, in practice the value of the cut-off may be chosen by the researcher
in advance. Due to the asymptotic nature of the result of Rousseau and Mengersen (2011),
larger sample sizes would generally warrant lower values for the cut-off.
Based on the results of the simulation studies, as discussed above, combined with the
results of the blood donor data set, we give the following recommendations:

� We recommend to consider the R&M criterion to choose the number of latent classes
in Bayesian finite mixture models. This criterion is easy to implement in practice,
and its performance compares favorably with alternative criteria.

� To implement the criterion, one should first estimate a mixture model with a large
number of classes (e.g., 10 classes), so that some classes will be overfitted.

� The number of classes in the final finite mixture model is then chosen as the pos-
terior mode of the number of classes with a proportion larger than the predefined
cut-off, which we recommend to set between 0.02 - 0.05. Lower values of the cut-off
should be used if the researcher is specifically interested in the classes with small
proportions in the population.

� It seems best to use vague or uninformative priors for the class-specific parameters,
and the use of hierarchical priors such as the normal-gamma prior is not recom-
mended.

� The class proportions should be given a Dirichlet prior with α lower than d/2, i.e.,
the number of class-specific parameters divided by 2. A value of α slightly lower
than d/2 (e.g., between 0.8 and 0.9 d/2) seems to yield the best results.

A limitation of this study is that only finite mixtures of Gaussian distributions and growth
mixtures models were considered in the simulation study. Although the results of the
simulation study were similar in these two types of models, it is not certain that the
performance of the R&M will be similar in other types of models. Due to the large com-
putation time associated with simulation studies in a Bayesian setting, it was not feasible
to consider additional statistical models.
Another limitation is that only predefined settings were evaluated for the priors of both
class-specific parameters and the class proportions. It is possible that intermediate values
of α or ψ, or also other priors not considered here would lead to a better performance. We
further did not consider alternatives to the normal-gamma prior and the noninformative
prior for the class-specific parameters.
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Conclusion

If appropriate priors are used for both the class-specific parameters and the class propor-
tions, it seems possible to effectively estimate the number of latent classes in a Bayesian
finite mixture model using the R&M criterion. This criterion compares favorably to al-
ternative model selection criteria for the number of latent classes in terms of both perfor-
mance and ease of implementation.
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5.7. Supplementary material

5.7 Supplementary material

Table S1: Scenario Appendix 1; a heterogeneous population with different clusters (K = 1, . . . , 6).
μj = j and σj = 0.25, (j = 1, . . . , 6), and (Kmax = 10). Percentage of data sets in which the true
number of clusters was found, with the mode of the estimated number of classes in parentheses. A
relatively uninformative prior was used for the class-specific parameters.

α Cut-off k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

0.00001 R&MNI
0 100%(1) 100%(2) 95%(3) 70%(4) 40%(4) 10%(4)

R&MNI
0.01 100%(1) 100%(2) 95%(3) 70%(4) 40%(4) 10%(4)

R&MNI
0.02 100%(1) 100%(2) 95%(3) 70%(4) 40%(4) 10%(4)

R&MNI
0.05 100%(1) 100%(2) 95%(3) 70%(4) 40%(4) 10%(4)

0.001 R&MNI
0 100%(1) 100%(2) 95%(3) 70%(4) 30%(4) 0%(4)

R&MNI
0.01 100%(1) 100%(2) 95%(3) 70%(4) 30%(4) 0%(4)

R&MNI
0.02 100%(1) 100%(2) 95%(3) 70%(4) 30%(4) 0%(4)

R&MNI
0.05 100%(1) 100%(2) 95%(3) 70%(4) 30%(4) 0%(4)

0.01 R&MNI
0 100%(1) 100%(2) 95%(3) 75%(4) 55%(5) 5%(4)

R&MNI
0.01 100%(1) 100%(2) 95%(3) 75%(4) 55%(5) 5%(4)

R&MNI
0.02 100%(1) 100%(2) 95%(3) 75%(4) 55%(5) 5%(4)

R&MNI
0.05 100%(1) 100%(2) 95%(3) 75%(4) 55%(5) 5%(4)

0.05 R&MNI
0 100%(1) 100%(2) 100%(3) 75%(4) 60%(5) 35%(5)

R&MNI
0.01 100%(1) 100%(2) 100%(3) 75%(4) 60%(5) 35%(5)

R&MNI
0.02 100%(1) 100%(2) 100%(3) 75%(4) 60%(5) 35%(5)

R&MNI
0.05 100%(1) 100%(2) 100%(3) 75%(4) 60%(5) 35%(5)

0.1 R&MNI
0 100%(1) 100%(2) 100%(3) 80%(4) 80%(5) 55%(6)

R&MNI
0.01 100%(1) 100%(2) 100%(3) 80%(4) 80%(5) 50%(6)

R&MNI
0.02 100%(1) 100%(2) 100%(3) 80%(4) 80%(5) 50%(6)

R&MNI
0.05 100%(1) 100%(2) 100%(3) 80%(4) 80%(5) 45%(5)

0.3 R&MNI
0 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 95%(6)

R&MNI
0.01 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 90%(6)

R&MNI
0.02 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 90%(6)

R&MNI
0.05 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 90%(6)

0.5 R&MNI
0 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 85%(6)

R&MNI
0.01 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 100%(6)

R&MNI
0.02 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 100%(6)

R&MNI
0.05 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 100%(6)

0.9 R&MNI
0 95%(1) 95%(2) 45%(3) 0%(5) 0%(6) 0%(7)

R&MNI
0.01 100%(1) 100%(2) 100%(3) 70%(4) 25%(6) 10%(7)

R&MNI
0.02 100%(1) 100%(2) 100%(3) 85%(4) 60%(5) 30%(7)

R&MNI
0.05 100%(1) 100%(2) 100%(3) 100%(4) 95%(5) 90%(6)

frequentist BIC 100%(1) 100%(2) 100%(3) 65%(4) 45%(5) 15%(7)
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5. CRITERIA FOR CHOOSING NUMBER OF CLASSES IN MIXTURE MODELS

Table S2: Scenario Appendix 2; a heterogeneous population with different clusters (K = 1, . . . , 6).
μj = j and σj = 0.25, (j = 1, . . . , 6), and (Kmax = 10). Percentage of data sets in which the true
number of clusters was found, with the mode of the estimated number of classes in parentheses. A
normal-gamma prior was used for the class-specific parameters.

α Cut-off k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

0.00001 R&MNG
0 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 70%(6)

R&MNG
0.01 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 70%(6)

R&MNG
0.02 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 70%(6)

R&MNG
0.05 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 70%(6)

0.001 R&MNG
0 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 100%(6)

R&MNG
0.01 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 100%(6)

R&MNG
0.02 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 100%(6)

R&MNG
0.05 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 100%(6)

0.01 R&MNG
0 95%(1) 100%(2) 100%(3) 100%(4) 100%(5) 100%(6)

R&MNG
0.01 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 100%(6)

R&MNG
0.02 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 100%(6)

R&MNG
0.05 100%(1) 100%(2) 100%(3) 100%(4) 100%(5) 100%(6)

0.05 R&MNG
0 30%(2) 5%(3) 0%(3) 5%(5) 40%(6) 80%(6)

R&MNG
0.01 55%(1) 85%(2) 95%(3) 100%(4) 95%(5) 100%(6)

R&MNG
0.02 60%(1) 95%(2) 100%(3) 100%(4) 95%(5) 100%(6)

R&MNG
0.05 80%(1) 95%(2) 100%(3) 100%(4) 100%(5) 100%(6)

0.1 R&MNG
0 0%(3) 0%(4) 0%(5) 0%(6) 0%(6) 0%(7)

R&MNG
0.01 0%(3) 0%(3) 0%(4) 0%(5) 15%(6) 80%(6)

R&MNG
0.02 0%(2) 0%(3) 10%(4) 20%(5) 70%(5) 100%(6)

R&MNG
0.05 10%(2) 45%(3) 80%(3) 100%(4) 100%(5) 100%(6)

0.3 R&MNG
0 0%(7) 0%(7) 0%(8) 0%(8) 0%(9) 0%(9)

R&MNG
0.01 0%(6) 0%(6) 0%(6) 0%(7) 0%(7) 0%(8)

R&MNG
0.02 0%(5) 0%(5) 0%(6) 0%(6) 0%(7) 0%(7)

R&MNG
0.05 0%(4) 0%(4) 0%(4) 0%(5) 0%(6) 75%(6)

0.5 R&MNG
0 0%(8) 0%(9) 0%(9) 0%(9) 0%(10) 0%(10)

R&MNG
0.01 0%(7) 0%(7) 0%(7) 0%(8) 0%(8) 0%(9)

R&MNG
0.02 0%(6) 0%(6) 0%(7) 0%(7) 0%(8) 0%(8)

R&MNG
0.05 0%(5) 0%(5) 0%(5) 0%(6) 0%(6) 5%(7)

0.9 R&MNG
0 0%(9) 0%(10) 0%(10) 0%(10) 0%(10) 0%(10)

R&MNG
0.01 0%(8) 0%(9) 0%(9) 0%(9) 0%(9) 0%(9)

R&MNG
0.02 0%(8) 0%(8) 0%(8) 0%(8) 0%(8) 0%(9)

R&MNG
0.05 0%(6) 0%(6) 0%(6) 0%(6) 0%(7) 0%(7)

frequentist BIC 100%(1) 100%(2) 100%(3) 65%(4) 45%(5) 15%(7)
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5.7. Supplementary material

Table S3: The results of Scenario B1; Percentage of data sets in which the true number of clusters was
found, with the mode of the estimated number of classes in parentheses.

α R&MNI
0 R&MNI

0.01 R&MNI
0.02 R&MNI

0.05

0.00001 100%(1) 100%(1) 100%(1) 100%(1)
0.001 100%(1) 100%(1) 100%(1) 100%(1)
0.01 100%(1) 100%(1) 100%(1) 100%(1)
0.05 100%(1) 100%(1) 100%(1) 100%(1)
0.1 100%(1) 100%(1) 100%(1) 100%(1)
0.3 100%(1) 100%(1) 100%(1) 100%(1)
0.5 100%(1) 100%(1) 100%(1) 100%(1)
1.0 100%(1) 100%(1) 100%(1) 100%(1)
1.5 100%(1) 100%(1) 100%(1) 100%(1)
2.0 98%(1) 98%(1) 98%(1) 98%(1)

The success rate of BIC using a frequentist approach was 100%.
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5. CRITERIA FOR CHOOSING NUMBER OF CLASSES IN MIXTURE MODELS

Table S4: Scenario Appendix 3; a heterogeneous population with different clusters (K = 1, . . . , 6).
μj = j and σj = 0.40, (j = 1, . . . , 6), and (Kmax = 10). Percentage of data sets in which the true
number of clusters was found, with the mode of the estimated number of classes in parentheses. A
relatively uninformative prior was used for the class-specific parameters.

α Cut-off k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

0.00001 R&MNI
0 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.01 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.02 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.05 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

0.001 R&MNI
0 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.01 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.02 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.05 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

0.01 R&MNI
0 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.01 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.02 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.05 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

0.05 R&MNI
0 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.01 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.02 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.05 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

0.1 R&MNI
0 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.01 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.02 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNI
0.05 100%(1) 5%(1) 0%(2) 0%(2) 0%(3) 0%(3)

0.3 R&MNI
0 100%(1) 40%(1) 5%(2) 0%(3) 0%(3) 0%(4)

R&MNI
0.01 100%(1) 35%(1) 5%(2) 0%(3) 0%(3) 0%(3)

R&MNI
0.02 100%(1) 35%(1) 5%(2) 0%(3) 0%(3) 0%(3)

R&MNI
0.05 100%(1) 35%(1) 5%(2) 0%(3) 0%(3) 0%(3)

0.5 R&MNI
0 90%(1) 55%(2) 25%(3) 5%(3) 0%(4) 0%(5)

R&MNI
0.01 90%(1) 55%(2) 15%(3) 0%(3) 0%(3) 0%(4)

R&MNI
0.02 100%(1) 55%(2) 15%(3) 0%(3) 0%(3) 0%(4)

R&MNI
0.05 100%(1) 55%(2) 15%(3) 0%(3) 0%(3) 0%(4)

0.9 R&MNI
0 80%(1) 65%(2) 25%(4) 15%(5) 10%(6) 15%(7)

R&MNI
0.01 95%(1) 95%(2) 95%(3) 95%(4) 95%(5) 95%(6)

R&MNI
0.02 95%(1) 90%(2) 95%(3) 95%(4) 90%(5) 30%(5)

R&MNI
0.05 100%(1) 95%(2) 90%(3) 60%(4) 25%(4) 5%(5)

frequentist BIC 100%(1) 45%(1) 15%(2) 0%(3) 0%(3) 0%(3)
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5.7. Supplementary material

Table S5: Scenario Appendix 4; a heterogeneous population with different clusters (K = 1, . . . , 6).
μj = j and σj = 0.40, (j = 1, . . . , 6), and (Kmax = 10). Percentage of data sets in which the true
number of clusters was found, with the mode of the estimated number of classes in parentheses. A
normal-gamma prior was used for the class-specific parameters.

α Cut-off k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

0.00001 R&MNG
0 100%(1) 15%(1) 0%(2) 0%(2) 0%(2) 0%(3)

R&MNG
0.01 100%(1) 15%(1) 0%(2) 0%(2) 0%(2) 0%(3)

R&MNG
0.02 100%(1) 15%(1) 0%(2) 0%(2) 0%(2) 0%(3)

R&MNG
0.05 100%(1) 15%(1) 0%(2) 0%(2) 0%(2) 0%(3)

0.001 R&MNG
0 100%(1) 20%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNG
0.01 100%(1) 20%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNG
0.02 100%(1) 15%(1) 0%(2) 0%(2) 0%(3) 0%(3)

R&MNG
0.05 100%(1) 15%(1) 0%(2) 0%(2) 0%(3) 0%(3)

0.01 R&MNG
0 100%(1) 55%(2) 25%(2) 0%(3) 0%(3) 0%(3)

R&MNG
0.01 100%(1) 50%(2) 20%(2) 0%(3) 0%(3) 0%(3)

R&MNG
0.02 100%(1) 50%(2) 20%(2) 0%(3) 0%(3) 0%(3)

R&MNG
0.05 100%(1) 50%(2) 20%(2) 0%(3) 0%(3) 0%(3)

0.05 R&MNG
0 30%(2) 40%(3) 75%(3) 85%(4) 20%(4) 0%(4)

R&MNG
0.01 65%(1) 85%(2) 75%(3) 10%(3) 0%(3) 0%(4)

R&MNG
0.02 70%(1) 95%(2) 60%(3) 5%(3) 0%(3) 0%(4)

R&MNG
0.05 80%(1) 90%(2) 40%(2) 0%(3) 0%(3) 0%(4)

0.1 R&MNG
0 0%(3) 0%(4) 0%(5) 0%(5) 65%(5) 65%(6)

R&MNG
0.01 0%(3) 5%(3) 15%(4) 100%(4) 40%(5) 0%(5)

R&MNG
0.02 0%(2) 10%(3) 50%(3) 100%(4) 25%(5) 0%(4)

R&MNG
0.05 10%(2) 45%(3) 95%(3) 40%(3) 0%(4) 0%(4)

0.3 R&MNG
0 0%(7) 0%(7) 0%(8) 0%(8) 0%(8) 0%(0)

R&MNG
0.01 0%(6) 0%(6) 0%(6) 0%(7) 0%(7) 0%(7)

R&MNG
0.02 0%(5) 0%(5) 0%(6) 0%(6) 0%(6) 95%(6)

R&MNG
0.05 0%(4) 0%(4) 0%(5) 0%(5) 100%(5) 10%(5)

0.5 R&MNG
0 0%(8) 0%(9) 0%(9) 0%(9) 0%(9) 0%(10)

R&MNG
0.01 0%(7) 0%(7) 0%(8) 0%(8) 0%(8) 0%(8)

R&MNG
0.02 0%(6) 0%(6) 0%(7) 0%(7) 0%(7) 0%(7)

R&MNG
0.05 0%(5) 0%(5) 0%(5) 0%(6) 0%(6) 100%(6)

0.9 R&MNG
0 0%(9) 0%(10) 0%(10) 0%(10) 0%(10) 0%(10)

R&MNG
0.01 0%(8) 0%(9) 0%(9) 0%(9) 0%(9) 0%(9)

R&MNG
0.02 0%(8) 0%(8) 0%(8) 0%(8) 0%(8) 0%(8)

R&MNG
0.05 0%(6) 0%(6) 0%(6) 0%(6) 0%(7) 15%(7)

frequentist BIC 100%(1) 45%(1) 15%(2) 0%(3) 0%(3) 0%(3)
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6 Conclusions
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6. CONCLUSIONS

In this chapter, we provide an overview of the statistical techniques and the main
findings reported in the preceding chapters with a discussion on possible improvements
and future extensions.

6.1 General conclusions

In Chapter 2, we showed that the transition models and the mixed effects models provide
a much better prediction compared to a multiple linear regression model. In general, the
transition model provides a somewhat better prediction than the mixed effects model, es-
pecially at high visit numbers. In addition, the transition model offers a better trade-off
between sensitivity and specificity when varying the cut-off values for eligibility in pre-
dicted values. Hence transition models make the prediction of hemoglobin level more
precise and may lead to less deferral from donation in the future.
Moreover, both the transition and the mixed effects models use the data of a person’s pre-
vious observations for making predictions. In the transition model only the last q observa-
tions are used for predicting the current response. However, in the mixed effects model,
the empirical Bayes method for estimating a person’s random effects uses all previous ob-
servations. Therefore, the mixed effects model requires more historical information than
the transition model. Since the transition model is convenient in practice and needs less
historical information compared to the mixed effects model, blood banks may use this
model to predict the future hemoglobin level of a candidate and to determine which can-
didates should not be invited for the next donation.
In Chapter 3 our findings suggest that describing the total donor population using a sin-
gle trajectory oversimplifies the complex growth patterns of this population. Instead, a
growth mixture modeling approach, which accounts for different subgroups of donors,
seems to be an appropriate method for capturing differences in Hb trajectories between
donors. Therefore, individual donors belonging to different classes should potentially be
approached differently. For donors with a low but stable Hb trajectory, delaying the next
invitation may not help to decrease the probability of deferral. Donors with a normal ini-
tial Hb level become at risk for deferral only with a high donation frequency, because the
estimated Hb decline per donation is fairly small in this group. Thus for this group, the
advice could be to increase donation intervals. Donors with high initial Hb levels do not
have a very high risk of Hb deferral. Changing their donation intervals may therefore not
be very effective in preventing Hb deferral.
In Chapter 4, we show that the estimated recovery time is considerably longer than the
mandatory interval between donations (i.e., 56 days). Also, our findings point to a con-
cave Hb recovery process. That is, the recovery process is fastest at the beginning and
becomes slower over time. The estimated recovery time should be seen as the ultimate
recovery time, i.e., the time by which a donor’s Hb value has fully recovered. Due to

118



Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016Processed on: 14-7-2016

504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem504200-L-sub01-bw-Kazem

6.2. Future research

the concave shape of the recovery process, most of the recovery occurs before half of the
recovery time has passed, which partially explains the long estimated recovery times in
our data set. Furthermore, it should be noted that a recovery time that is longer than the
average interval between donations is in line with the observed data, as there is a decline
in the Hb trajectories with the number of donations.
Another interesting finding is that there is heterogeneity between donors in the recovery
time, i.e., 54.3% and 51.3% of male and female donors have a constant recovery time dur-
ing successive donations. The remaining donors have a longer recovery time and their
recovery time increases after a number of donations. This increase in recovery time might
be attributed to a reduction of the iron reserves in these donors.
In Chapter 5, the results of the simulation studies showed that the Rousseau and
Mengersen (2011) (R&M) criterion has a high probability of estimating the correct number
of latent classes, provided that the priors on the proportions and the class-specific param-
eters are chosen carefully. Despite the simplicity of this criterion, it performs at least as
good as alternative selection criteria for the number of latent classes. The application of
the R&M criterion to longitudinal data of blood donors further illustrated the practical
usefulness of this method.
An important advantage of the R&M criterion is that this approach is straightforward
to implement, using MCMC sampling for a mixture model with a large number of la-
tent classes. The number of nonempty latent classes (i.e., classes with a proportion larger
than the predefined cutoff value) is then an automatic byproduct of the MCMC sampler.
Therefore, this criterion can easily be implemented in standard Bayesian software such as
WinBugs and JAGS, even for complex statistical models such as latent class mixed-effects
models and multivariate mixture models. A further advantage of the R&M criterion is
that it is not affected by label switching. Despite the fact that the R&M criterion is rela-
tively easy to implement, this criterion seems to perform better than alternative criteria at
estimating the true number of classes.

6.2 Future research

Although we designed our models in this thesis to be very flexible to model longitudinal
Hb values, we do not claim that our final models for blood donors are optimal; further re-
search is needed to arrive at a better prediction model. Our proposed models in this thesis
are only few models out of many possible models. For instance, models that predict the
probability of rejection as a function of previous Hb values could be developed. In addi-
tion, it may be possible to develop statistical models that treat the amount of iron reserves
as a latent variable. The amount of iron reserves is reduced at every blood donation, but
is slowly replenished over time. Such a model may be able to explain why the recovery
process depends on the number of previous donations, as the iron reserves are depleted
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6. CONCLUSIONS

with successive donations.
Further our models for predicting Hb values could be improved by incorporating more
covariates that can affect Hb value such as physical activity, race, nutrition, BMI, and
smoking status. However, due to a lack of information, we could not incorporate them
into our model.
Based on our latent class model, some donors appear to have high initial Hb levels and
others do not, and some show faster declines in Hb than others. This may be due to dif-
ferences in lifestyle, iron status, iron metabolism, and/or erythropoiesis. Including more
of this information in the models may improve the precision of the prediction of latent
classes at the first few visits. For this reason class membership could be modeled to de-
pend on some of these time-independent covariates and/or genetic information of donors.
Moreover, future research should indicate whether adverse health effects of donation are
different for donors with stable or declining Hb levels.
Finally, the ultimate purpose of the prediction exercise is not the prediction of the fu-
ture Hb value, but rather to determine the best time for the donor to return for donation.
Hence, one should focus on predicting the recovery time on an individual level in order to
determine the optimal interval between donations from a cost-effectiveness point of view,
instead of on predicting future Hb values.
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7. SUMMARY/ACKNOWLEDGEMENTS/PH.D. PORTFOLIO/ CV

Summary

Blood transfusion is an essential part of modern healthcare, which helps save millions of
lives each year. Since blood is a unique resource for which an artificial substitute has yet to
be found, blood donations are in great need. Although blood donations and subsequent
transfusions are meant to help patients, they might be harmful for both the recipients
and the donors. The most important potential harm for donors is that whole blood do-
nation causes a loss of iron and blood cells. Repeated donations could however deplete
iron stores, leading to iron depletion and ultimately anemia. To protect donors from de-
veloping iron deficiency anemia after blood donations, the Hb value of blood donors is
assessed prior to each donation. Donors with too low Hb value are deferred from dona-
tion to protect donor health and quality of donated blood. Although deferrals are meant
to protect donors and the quality of blood units for transfusion, Hb deferrals decrease the
cost-effectiveness of blood supply, because (i) testing and deferring a donor are expensive;
(ii) for every deferred donor, another donor needs to be invited to reach collection targets;
and (iii) lapsing donors need to be replaced by new donors because deferred candidates
rarely return for donation.
In this thesis, we developed and investigated several Bayesian statistical approaches to
model longitudinal Hb values in blood donors.
Chapter 1 provides a brief overview to the clinical and statistical issues that were ad-
dressed in this thesis. In Chapter 2, we compare transition models with different numbers
of autoregressive terms and mixed effects models, as plausible models to account for the
dependence among subsequent Hb values within a donor and as models to predict the
future Hb value. This chapter shows the capabilities of longitudinal models in prediction
and our findings may help reduce the number of deferred candidate in the blood banks.
In Chapter 3, we show that describing the total donor population using a single trajectory
oversimplifies the complex growth patterns of donor population. Instead, a growth mix-
ture modeling approach, which accounts for different subgroups of donors, seems to be
an appropriate method for capturing differences in Hb trajectories between donors. These
findings are of high importance for identification of donors who could benefit from tai-
lored donation intervals to prevent iron deficiency and donor deferrals.
Chapter 4 considers a latent class mixed-effects transition model for the prediction of a
future Hb value for a potential blood donor given the previous observations, and the esti-
mation of the recovery time after a donation. The advantage of this model is that it simul-
taneously captures heterogeneity and state dependence. In this model, the heterogeneity
in the recovery process was controlled using latent classes and the dynamics of the recov-
ery process using a change point model. The temporary reduction of Hb after donation
was modeled using a flexible function. This flexible function enables us to estimate the
recovery time, which is the time needed for Hb to return to its pre-donation value. These
results are important for practice, as they may be used to improve the planning of donors’
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visits to the blood banks and help to tailor donation intervals and prevent iron deficiency
and donor deferrals.
In Chapter 5 we performed an extensive simulation study to develop practical guidelines
to determine the appropriate number of latent classes based on the posterior distribution
of the class proportions, and to compare this criterion with alternative criteria. The per-
formance of the proposed criterion is illustrated using a data set of repeatedly measured
hemoglobin values of blood donors. Chapter 6 provides a summary of the findings in the
preceding chapters with a discussion on possible improvements and future extensions.
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Samenvatting

Bloedtransfusie is een essentieel onderdeel van de hedendaagse gezondheidszorg.
Dankzij bloedtransfusie worden er jaarlijks miljoenen levens gered. Aangezien er geen
kunstmatig alternatief is voor menselijk bloed, is er nog steeds een grote behoefte aan
gedoneerd bloed. Hoewel bloeddonatie en de daaropvolgende bloedtransfusie in het al-
gemeen bijdragen aan de gezondheid van patinten, zijn er ook risicos aan verbonden voor
zowel de bloeddonoren als ontvangers. Voor bloeddonoren is dit het verlies aan ijzer en
rode bloedcellen. Immers veelvuldige bloeddonatie kan leiden tot een afname van de ijz-
erreserves in het menselijk lichaam, en zelfs tot een ijzertekort en de ontwikkeling van
anemie (bloedarmoede).
Voorafgaand aan elke donatie wordt de hemoglobinewaarde (Hb-waarde) van de donor
gemeten. Bij donoren met een te lage Hb-waarde wordt de bloeddonatie uitgesteld, zodat
de ijzerreserves de tijd krijgen zich te herstellen en de ontwikkeling van een ijzertekort
of anemie wordt voorkomen. Deze strategie moet ook bijdragen tot de kwaliteit van het
gedoneerde bloed. Echter, een belangrijk nadeel van het uitstellen van een donatie is de
verlaagde kosteneffectiviteit. Deze wordt veroorzaakt door a) de kosten van het testen van
de Hb-waarde en het maken van een nieuwe afspraak voor bloeddonatie, b) het zoeken
naar een andere donor om de donor met een te lage Hb-waarde te vervangen, en c) een
verminderde motivatie bij de uitgestelde donoren om terug te keren naar de bloedbank.
In dit proefschrift hebben we diverse, en vooral Bayesiaanse, statistische methoden on-
twikkeld voor het modelleren van longitudinale waarnemingen van Hb-waarden bij
bloeddonoren. Hoofdstuk 1 geeft een introductie tot bloeddonatie en een overzicht
van de klinische en statistische onderzoeksvragen van het onderzoek in dit proefschrift.
In Hoofdstuk 2 vergelijken we verschillende statistische modellen (transitiemodellen
met verschillende aantallen autoregressieve termen en gemengde modellen) voor het
modelleren van de afhankelijkheid van opeenvolgende Hb-waarden van een bloed-
donor. Tevens worden deze modellen gebruikt voor het voorspellen van toekomstige
Hb-waarden van een donor. Dit hoofdstuk illustreert hoe voorspellingen kunnen wor-
den gedaan met longitudinale modellen, en hoe de conclusies van dergelijke methodes
kunnen bijdragen tot een reductie van het aantal uitgestelde bloeddonaties.
In Hoofdstuk 3 laten we zien dat het verloop van de Hb-waarden over de tijd in de donor-
populatie niet met slechts één patroon of wiskundige functie kan worden gemodelleerd.
Hiervoor hebben we een gemengd groeimodel (growth mixture model) ontwikkeld dat
ermee rekening houdt dat de donorpopulatie bestaat uit verschillende groepen donoren
met een verschillend verloop van de Hb-waarden. Deze statistische methode lijkt geschikt
voor het modelleren van interindividuele verschillen in het longitudinale verloop van
Hb-waarden van donoren. De methode kan worden gebruikt voor het identificeren van
donoren voor wie de tijdsintervallen tussen donaties moeten worden aangepast om alzo
ijzertekorten en uitgestelde donaties te voorkomen.
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Hoofdstuk 4 beschrijft een gemengd transitiemodel met latente klassen voor het voor-
spellen van de toekomstige Hb-waarde van een potentiële bloeddonor uitgaande van
eerder gemeten Hb-waarden. Een belangrijk voordeel van dit model is dat de hetero-
geniteit en de afhankelijkheid van de Hb-waarden gezamenlijk worden gemodelleerd.
De heterogeniteit in het herstelproces van de Hb-waarde wordt beschreven met latente
klassen, en de dynamiek van het herstelproces wordt beschreven met een flexibele func-
tie en een kantelpunt (change point) dat afhangt van het aantal donaties. Deze flexibele
functie stelt ons in staat de hersteltijd, dat wil zeggen de tijd totdat de Hb-waarde hersteld
is tot het niveau voor de donatie, te schatten. Dit is van groot praktisch belang, omdat
schattingen van de hersteltijd kunnen worden gebruikt om de planning van de bezoeken
van bloeddonoren aan de bloedbank te optimaliseren, en dus ijzertekorten en uitgestelde
donaties te voorkomen.
In Hoofdstuk 5 hebben we een uitgebreide simulatiestudie gedaan voor het bepalen van
het aantal latente klassen in latenteklassenmodellen. Met andere woorden, we wensten
na te gaan hoe goed subgroepen in een populatie ontdekt kunnen worden met behulp
van Bayesiaanse technieken. Deze simulatiestudie is gebruikt voor het ontwikkelen van
praktische richtlijnen voor het kiezen van het aantal latente klassen met een criterium op
basis van de posteriorverdeling van de klassengroottes in een Bayesiaans latenteklassen-
model. In de simulatiestudie zijn de prestaties van dit criterium vergeleken met andere
criteria. Het nut en de praktische toepasbaarheid van het criterium op basis van de poste-
riorverdeling van de klassengroottes wordt geı̈llustreerd aan de hand van een dataset met
herhaalde metingen van Hb-waarden van bloeddonoren.
Ten slotte geeft Hoofdstuk 6 een samenvatting van de belangrijkste bevindingen van dit
proefschrift en een discussie van mogelijke verbeteringen en uitbreidingen van de ge-
bruikte statistische technieken.
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